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Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. Let G C GL,(R), v,w € T1G. Use the definition

d
adyv = — Exp (tw) Exp (sv) Exp (—tw)
s=0
of the adjoint representation and the expansion of the power series for exponents of tw and sv to show

that ad,v = [w,v].

Solution: This can be done by a straightforward computation. Namely, by expanding all the exponents as
power series and collecting the coefficients of t's! in the product one can immediately see that the coefficient
is wv — vw. Now observe that after taking derivatives with respect to s and ¢ at (0,0) one obtains exactly the
coefficient of t!s!.

2.2. (a) Let A,B € M,(R), [A,B] = 0. Take ¢t € R and show that Exp (¢{(A + B)) = Exp (tA) Exp (tB)
(in particular, you obtain that Exp (A + B) = Exp (A) Exp (B)).
(b) Show that
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Guess what would be the exponential of an n x n-matrix of the same form (i.e., a Jordan block
with zero eigenvalue).

(c) Show that
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Solution:

(a) Asin the previous exercise, expand both exponents Exp (tA) and Exp (¢B) as power series and collect the

coefficient of " in the product. The monomials involved will be of type %, so the monomial
containing t" in the product will be
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So the power series Exp (A) terminates after 4 terms and we conclude that
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(c) Let B = tel, where I denotes the 4 x 4 identity matrix, and let A be as in (a). Then we have Exp (B) = e'“I
and A and B commute. This implies that
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2.3. (x) Let (G,(:,-)) be a Lie group with a bi-invariant Riemannian metric (i.e., both L, and R, are
isometries for every g € GG). Let g denote the Lie algebra of G, and let X,Y, Z € g.

(a) Show that (X,Y) is a constant function on G.
(b) Use the relation

(Z,VxY)= %(X(Z, Y)+Y(Z, X)-Z(Y,X)+(X,[Z,Y])+ (Y, [Z,X]) — (Z,]Y, X]))

and the fact that the metric is left-invariant to prove that (Z, VyY) = (Y, [Z,Y]).
(c) By Corollary 6.18, the bi-invariance of the metric implies that

<[U’ X]’ V> = _<U’ [V’ X]>
for X, U,V € g. Use this fact to conclude that VyY =0 for all Y € g.
(d) Show that VxY = 1[X,Y].
Solution:

(a)
(X(9),Y(9))g = (DLg(e)X(e), DLy(e)Y (¢))g = (X(e), Y (€))e,
s0 (X(g),Y (g))g4 does not depend on g.
(b) The relation with 6 terms in the RHS implies that

<27 VYY> =

DN | =

(V(ZY) 4 Y{Z,Y) = Z00,Y) + (V2 Y] + YV, 2,Y]) - (ZV,Y]) =
S (2 YD+, (2,7,

since the first three derivatives of the right hand side of the relation vanish by (a). Moreover, we have
[Y,Y] = 0. Thus, we conclude that
<Z7 VYY> = <Y7 [Z7 Y]>

(c¢) The bi-invariance implies that
(Y, X],Y) = =\, [Y, X]) = —([\, X], Y),

so ([Y, X],Y) = 0. This gives us (X,VyY) = 0 for all left-invariant X, so we have VyY = 0 for all
left-invariant Y.

(d) We calculate
0=Vxivy(X+Y)=VxY+VyX+VxX+VyY =VxY +VyX =2VxY - [X,Y].

Division by two finally yields

1
VxY = S [X.Y].



2.4. The special unitary group SU, C M,(C) consists of n x n matrices A with complex entries and unit
determinant satisfying the equation A'A =T = AA?.

(a) Show that SU, forms a group under matrix multiplication.

(b) Show that SU; consists of all matrices of the form

(Z 2}), zzweC, |2+ |w? = 1.

—w

(c) Show that SUs is a smooth (real) manifold. Find its dimension.
(d) Show that SU; is a Lie group.

(e) Find the Lie algebra sus of SUs as a subspace of M3(C). Find any basis {vi,ve,v3} of sus.
Compute explicitly the left-invariant vector fields X1, Xo, X3 on SU, such that X;(I) = v;.

Solution:

(a) Let A, B € SU,,. Then e - B
(AB)'(AB) = B'A'AB = B'(A'A)B = B'B =1,

so AB € SU,. Also, det A"det A = det I = 1 and det A* = det A, which implies |[det A| = 1 # 0. Thus,
A~1 exists. Now observe that (A!)~1A=1 = (AA) "L =1, s0 A~ € SU,,.

(b) Let A = CCL Z , a,b,c,d € C. Then, computing A*A, we see that A € SU, if and only if the following

equations hold: -

la? + b2 =1, |c>+1|d*=1, ac+bd=0, ad—bc=1.
Multiplying the last two equations by ¢ and d respectively and adding them to each other, we see that
a(|c|? + |d|?) = d, which implies a = d. This, in its turn, immediately implies that ¢ = —b.
Thus, we proved that every A € SUs has required form. Conversely, it is clear that every matrix of such
form has unit determinant and satisfies A'A = I.

(c) We can embed SU; in R* with coordinates (1, ...,24) by writing z = x1 + ize and w = x3 + iz4. Thus,
SU, = f~40) for f: R* - R, f(z) = 2% + 25 + 23 + 27 — 1. Since 0 is a regular value, SUs, is a 3-dim
smooth manifold (actually, the description above shows that SUs is the 3-dim sphere S3).

(d) The multiplication and inverse are polynomials in the entries so they are clearly smooth.

x1(8) +ixa(s)  w3(s) + izy(s)

e) Let A(t) = . .
(e) (t) (—xg(s) +ix4(s) w1(s) — iza(s)
22(s) + 23(s) + 23(s) + 23(s) = 1 at s = 0, we obtain 24 (0) = 0. In other words,

> be a curve in SUs,, A(0) = I. Differentiating the equation

i) w

5u2=TISU2={(w m) | zeR, weC, x2+w|2:1}.

We can take as a basis of sus, for example, matrices

(0 =i /0 -1 (=i 0
=\ o0) 270 o) BT\ o

(this particular choice of signs can be explained by the fact that the matrices o1 = vy, 09 = ive, 05 = iv3
are Pauli matrices you could meet in Quantum Mechanics).

To construct left-invariant fields X; recall from Example 6.3 that for matrix groups X;(g) = ¢X;(I). Thus,
z  w

for g = ( _ ),wehave
Wz



