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Riemannian Geometry IV, Solutions 4 (Week 14)

4.1. Constant sectional curvature of hyperbolic 3-space
Let H? = {(x1,z2,23) € R® | 3 > 0} be the upper half-space model of the 3-dimensional hyperbolic
space, i.e. its metric is defined by g;; = 0 for i # j, g;; = 1/23.

(a) Show that sectional curvatures K(a%1 O K (72, 2 ) and K (52, -2-) in H® are equal to —1.
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(b) Use (a) and the linearity of the Riemann curvature tensor to show that for any p € H3 and

v1, V2, v3, V4 € T,H?

(R(v1,v2)v3,v4) = —({v1,v3)(v2,v4) — (v1,v4)(V2,V3))

holds.
(c) Use (b) to show that 3-dimensional hyperbolic space H? has constant sectional curvature —1.
(d) Show that n-dimensional hyperbolic space H" = {x € R™ | 2, > 0} with metric g;; = 0 for ¢ # j,

gii =1/ :L'% has constant sectional curvature —1.

Solution:

(a) We can compute the Christoffel symbols in a standard way obtaining
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the remaining ones are zero. Using this, we can also compute that
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Now, we compute K (-, 7,-) and K(&m’ 503)
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4.2.

4.3.
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Remark. In fact, the plane spanned by vectors 8%1, 8%3 is tangent to vertical hyperbolic plane x5 = ¢, so
the corresponding sectional curvature is exactly the curvature of hyperbolic plane which is equal to —1.

Thus, we could avoid the computation of K (-2- Do 323)

(b) By computations similar to ones done in (a), we obtain that
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Now we see that for all vectors {vy,vq,v3,v4} C {azl, 822’ 8903} we have an equality

Computation of K (2~ ) is similar.

(R(v1,v2)vs,v4) = — ((v1,v4) (v, v3) — (v1,v3) (v2,04))
By linearity, the equality above holds for any quadruple of tangent vectors.
(¢) This follows from (b) and Exercise 3.4.

(d) Tt is easy to see that the Christoffel symbol Ffj is not zero if and only if one of (4,7, k) equals n and
two others are equal. This implies that if all of (4, j, k,{) are distinct then R;jz; vanishes. Applying the
arguments of (b) we conclude that H™ has constant sectional curvature —1.

(%) The Bonnet — Myers theorem claims that if (M, g) is complete and connected, and there is € > 0
such that Ric,(v) > € for every p € M and for every unit tangent vector v, then the diameter of M is
finite.

Show by example that the assumption € > 0 is essential (i.e. cannot be substituted by the assumption
Ric,(v) > 0).

Solution: One may consider an elliptic paraboloid of revolution z = z? 4 y2. Its curvature is positive, but
the paraboloid is not compact (e.g., it is unbounded). Note that although the curvature is positive (since the
manifold is 2-dimensional sectional and Ricci curvatures coincide) it is not separated from zero, so there is no
contradiction with Bonnet-Myers theorem.

Second Variational Formula of Energy
Let F : (—e€,e) X [a,b] = M be a proper variation of a geodesic ¢ : [a,b] — M, and let X be its
variational vector field. Let E : (—¢,¢) — R denote the associated energy, i.e.,

/|| (s,)||dt.

E"(0 /H X|? = (R(X, ), X) dt

Show that

Solution:

Since E(s) = 3 [ b<d—F(s t), 9L (s,t)) dt, using the Riemannian property of covariant derivative we obtain
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Differentiating the integrand with respect to s, using the Symmetry Lemma, and setting then s = 0 yields
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Applying Riemannian property of covariant derivative, Symmetry Lemma, and using that %—f((),t) = X(t), we

conclude that
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Now we use Lemma 8.5 to interchange the order of covariant derivatives, and again Riemannian property to
obtain
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since ¢(t) is geodesic and %c’(t) =0.
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since the variation F(s,t) is proper.

Scalar curvature
The scalar curvature s(p) at point p € M is defined by

= Z Ricp(Uj),
j=1

where {u;} is an orthonormal basis of T),(M).

(a) Let V be a vector space, (-,-) is an inner product on V, and @ is a quadratic form on V. Show
that there exists a linear map 7' € End(V') such that Q(z) = (T'z,z) for every x € V.

(b) Show that the scalar curvature is well-defined, i.e. it does not depend on the choice of an
orthonormal basis of T},(M).

Solution:

(a) Choose any orthonormal basis {e;} of V. Then Q(z) can be written as Q(z) = x'Gz for appropriate
symmetric matrix G = (g;;). Here g;; = Q(e;, e;), where Q is the symmetric bilinear form constructed by
Q. ie. Qz,y) = 3(Qz+y) - Qz) — Qy)).
Since the basis is orthonormal, the inner product can be written as (z,z) = z'z. We need to find (a
matrix) T such that Q(z) = (Tz,x), i.e. 2'Gx = (Tz)'x, or equivalently, 'Gx = x!T*x. This holds if
G =T! or T = G'(= G since G is symmetric). It is easy to check that T is well-defined: if we change
basis via an orthogonal transformation matrix P, then G in the new basis becomes PGP, and T becomes
PTP~!, which agree since Pt = P~ for orthogonal matrices.

(b) According to Lemma 7.9 from the lectures, Ric, is a quadratic form. Thus, (a) implies that there exists
T € End(T,M) such that Ric,(u) = (T'w,u) for every u € T, M. Denote the matrix of 7" in the basis {u;}
by (T;;). Then
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which does not depend on the basis.



