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Riemannian Geometry IV, Solutions 5 (Week 15)

5.1. Let S2 = {x ∈ R3 | x12 + x2
2 + x3

2 = 1} be a unit sphere, and c : [−π/2, π/2] → S2 be a geodesic
defined by c(t) = (cos t, 0, sin t). Define a vector field X : [−π/2, π/2]→ TS2 along c by

X(t) = (0, cos t, 0).

Let D
dt denote the covariant derivative along c.

(a) Calculate D
dtX(t) and D2

dt2
X(t).

(b) Show that X satisfies the Jacobi equation.

Solution:

The problem can be solved by a direct computation: compute Christoffel symbols, and then compute first and
second covariant derivatives of X(t), then verify the Jacobi equation for X(t).

(a) If we parametrize the sphere by (x, y, z) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), one has Γ2
11 = − sinϑ cosϑ, Γ1

12 =
Γ1
21 = cotϑ with others Γkij equal to zero, where ϕ = x1 and ϑ = x2 (see Exercise 3.3).

In these coordinates, the curve c(t) = (cos t, 0, sin t) is c(t) = (0, π2 − t), c
′(t) = (0,−1) = − ∂

∂ϑ . Further,
observe that

∂

∂ϕ

∣∣
c(t)

= (− sinϑ sinϕ, sinϑ cosϕ, 0)
∣∣
ϕ=0, ϑ=π

2−t
= (0, cos t, 0) = X(t)

Hence,
D

dt
X(t) = ∇c′(t)X(t) = ∇− ∂

∂ϑ

∂

∂ϕ
= − cotϑ

∂

∂ϕ

∣∣
c(t)

= − tan tX(t),

D2

dt2
X(t) =

D

dt
(− tan tX(t)) = − sec2 tX(t) + tan2 tX(t) = −X(t) = − ∂

∂ϕ

∣∣
c(t)

(b) Compute R(X, c′)c′ = ∇X∇c′c′ − ∇c′∇Xc′ − ∇[X,c′]c
′. As X = ∂

∂ϕ and c′ = − ∂
∂ϑ , we have [X, c′] = 0.

Also,

∇X∇c′c′ = ∇ ∂
∂ϕ
∇− ∂

∂ϑ
− ∂

∂ϑ
= ∇ ∂

∂ϕ
0 = 0,

∇c′∇Xc′ = ∇− ∂
∂ϑ
∇ ∂

∂ϕ
− ∂

∂ϑ
= ∇ ∂

∂ϑ
(cotϑ

∂

∂ϕ
) = − 1

sin2 ϑ

∂

∂ϕ
+cotϑ(cotϑ

∂

∂ϕ
) = (cot2 ϑ− 1

sin2 ϑ
)
∂

∂ϕ
= −X(t).

Thus, R(X, c′)c′ = X(t) = ∂
∂ϕ , and (since D2

dt2X(t) = −X(t) = − ∂
∂ϕ ) Jacobi equation holds.

5.2. (?) Choose any r > 0 and consider a cylinder C ⊂ R3 with induced metric,

C = {(x, y, z) ∈ R3 |x2 + y2 = r2}

C can be parametrized by
(r cosϕ, r sinϕ, z), ϕ ∈ [0, 2π), z ∈ R

(a) Show that a curve c(t) = (r cos(t/r), r sin(t/r), 0) is a geodesic. Write c(t) in the form (ϕ(t), z(t)).

(b) Let α ∈ R. Show that cα(t) = (ϕ(t), z(t)) = ((t cosα)/r, t sinα) is a geodesic.

(c) Construct two distinct geodesic variations F1(s, t) and F2(s, t) of c(t), such that F1(s, 0) ≡ c(0),
and F2(s, 0) 6= c(0) for any s 6= 0. Compute the variational vector fields of F1 and F2.

(d) Construct the basis of the space Jc of Jacobi fields along c(t).

(e) Show that for any t0 ∈ R the points c(0) and c(t0) are not conjugate along c(t).



Solution:

(a) One way to do this is to use symmetry of C. More precisely, the reflection in the plane z = 0 is obviously
an isometry of C, and it preserves c(t). By the uniqueness theorem of a geodesic in a given direction, the
trace of c(t) should be a trace of a geodesic. Now observe that ‖c′(t)‖ = 1, so c(t) is a geodesic.

Another way is to observe that C is locally isometric to R2, and the isometry takes c(t) to a straight line
on R2.

Finally, one can compute the induced metric and Christoffel symbols (they are all zeros!), and then verify
that c(t) satisfies the ODE for geodesics.

In coordinates (ϕ, z), the geodesic c(t) is written as c(t) = (t/r, 0).

(b) The second and the third methods from (a) work perfectly fine in this case as well.

(c) We can take

F1(s, t) =

(
r cos

(
t cos s

r

)
, r sin

(
t cos s

r

)
, t sin s

)
Clearly, F1(0, t) = c(t), F1(s, 0) ≡ (r, 0, 0) = c(0), and every t 7→ F1(s0, t) is a geodesic by (b). The
variational vector field is X1(t) = (0, 0, t).

Shifting c(t) in vertical direction, we can take

F2(s, t) = (r cos(t/r), r sin(t/r), s)

The corresponding variational vector field is X2(t) = (0, 0, 1).

(d) We need 2n = 4 linearly independent vector fields. We have already found two, and observe that X1 and
X2 are both orthogonal and clearly linear independent, so they form a basis of the space of orthogonal
Jacobi fields. We can also take X3(t) = c′(t) and X4 = tc′(t), all of them together form a basis.

(e) Assume that J(0) = J(t0) = 0 for some J ∈ Jc. Since J(0) = 0, J should be a linear combination of X1

and X3. However, such a non-zero linear combination never vanishes except for t = 0.

5.3. Jacobi fields on manifolds of constant curvature.
Let M be a Riemannian manifold of constant sectional curvature K, and c : [0, 1] → M be a
geodesic parametrized by arc length. Let J : [0, 1] → TM be an orthogonal Jacobi field along c
(i.e. 〈J(t), c′(t)〉 = 0 for every t ∈ [0, 1]).

(a) Show that R(J, c′)c′ = KJ .

(b) Let Z1, Z2 : [0, 1] → TM be parallel vector fields along c with Z1(0) = J(0), Z2(0) = DJ
dt (0).

Show that

J(t) =


cos(t

√
K)Z1(t) + sin(t

√
K)√

K
Z2(t) if K > 0,

Z1(t) + tZ2(t) if K = 0,

cosh(t
√
−K)Z1(t) + sinh(t

√
−K)√

−K Z2(t) if K < 0.

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at t = 0
is the same as for J(t).

Solution:

(a) We conclude from Exercise 3.4 that

R(v1, v2)v3 = K(〈v2, v3〉v1 − 〈v1, v3〉v2).

This implies
R(J, c′)c′ = K(〈c′, c′〉J − 〈J, c′〉c′).

Since ‖c′‖2 = 1 and J⊥c′, we obtain
R(J, c′)c′ = KJ.



(b) We only consider the case K > 0, all other cases are similar. The vector field

J(t) = cos(t
√
K)Z1(t) +

sin(t
√
K)√

K
Z2(t)

satisfies J(0) = Z1(0) and

DJ

dt
(t) = −

√
K sin(t

√
K)Z1(t) + cos(t

√
K)Z2(t),

which implies DJ
dt (0) = Z2(0). Obviously, we have

D2J

dt2
(t) = −K cos(t

√
K)Z1(t)−

√
K sin(t

√
K)Z2(t) = −KJ(t),

and therefore we obtain
D2J

dt2
(t) +KJ(t) = 0,

i.e., J satisfies the Jacobi equation.


