Durham University Epiphany 2016
Pavel Tumarkin

Riemannian Geometry IV, Solutions 5 (Week 15)

5.1. Let S? = {x € R3 | 212 4 222 + x3° = 1} be a unit sphere, and ¢ : [-7/2,7/2] — S? be a geodesic
defined by c¢(t) = (cost, 0,sint). Define a vector field X : [-7/2,7/2] — T'S? along ¢ by

X(t) = (0,cost,0).

Let % denote the covariant derivative along c.

(a) Calculate £X(¢) and %X(t).

(b) Show that X satisfies the Jacobi equation.

Solution:

The problem can be solved by a direct computation: compute Christoffel symbols, and then compute first and
second covariant derivatives of X (t), then verify the Jacobi equation for X (t).

(a) If we parametrize the sphere by (z,y, z) = (sin v cos p, sin ¥ sin ¢, cos ), one has '}, = —sind cosd, I'}, =
I'}; = cot ¥ with others I‘fj equal to zero, where ¢ = x; and ¥ = x2 (see Exercise 3.3).
In these coordinates, the curve c(t) = (cost,0,sint) is c(t) = (0,% —¢t), ¢/(t) = (0,—1) = —Z. Further,
observe that

= (—sin¥sin ¢, sind cos p, 0)| = (0, cost,0) = X (¢)

% |c(t)

p=0,9=5—t
Hence,
D 0 0
%X(t) =VeopX(t) = V_%% = —cotﬂ%‘cm = —tant X (t),
D? D , , )
@X(t) = E(—tauatX(t)) = —sec’t X(t) +tan’t X(t) = —X(t) = —%}cm
(b) Compute R(X,c')c’ = VxVeuc = VoVxd = Vixecd As X = % and ¢ = —%, we have [X, ] = 0.
Also,
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VeVxd = V?B%V% 50— Va%(cotﬂa(p) = sin2ﬂ3<p+C0t19(COM93<p) = (cot“ ¥ sinzﬁ)acp =—-X(t)

Thus, R(X,d)d = X(t) = £, and (since %X(t) =-X(t) = —%) Jacobi equation holds.

5.2. (%) Choose any r > 0 and consider a cylinder C' C R3 with induced metric,
C={(z,y,2) €R’|2® +y* =r?}

C can be parametrized by
(recose,rsing,z), ¢ €l0,2m),z€ R
(a) Show that a curve ¢(t) = (rcos(t/r),rsin(t/r),0) is a geodesic. Write ¢(t) in the form (¢(t), z(t)).
(b) Let a € R. Show that ¢, (t) = (¢(t), 2(t)) = ((t cosa)/r, tsin ) is a geodesic.

(c) Construct two distinct geodesic variations Fi(s,t) and Fa(s,t) of ¢(t), such that Fi(s,0) = ¢(0),
and Fi(s,0) # ¢(0) for any s # 0. Compute the variational vector fields of F; and F;.

(d) Construct the basis of the space J. of Jacobi fields along c(t).
(e) Show that for any ¢y € R the points ¢(0) and ¢(tp) are not conjugate along c(t).



Solution:

(a) One way to do this is to use symmetry of C. More precisely, the reflection in the plane z = 0 is obviously
an isometry of C, and it preserves ¢(t). By the uniqueness theorem of a geodesic in a given direction, the
trace of ¢(t) should be a trace of a geodesic. Now observe that ||¢/(¢)|| = 1, so ¢(t) is a geodesic.

Another way is to observe that C is locally isometric to R?, and the isometry takes c(t) to a straight line
on R2.

Finally, one can compute the induced metric and Christoffel symbols (they are all zeros!), and then verify
that c(t) satisfies the ODE for geodesics.

In coordinates (¢, z), the geodesic ¢(t) is written as c(t) = (t/r,0).
(b) The second and the third methods from (a) work perfectly fine in this case as well.

(c) We can take
t t
Fi(s,t) = (T‘COS ( COSS) ,rsin( COSS) ,tsins)
r r

Clearly, F1(0,t) = ¢(t), Fi(s,0) = (r,0,0) = ¢(0), and every ¢t — Fj(so,t) is a geodesic by (b). The
variational vector field is X1 (t) = (0,0,t).
Shifting ¢(t) in vertical direction, we can take

Fy(s,t) = (rcos(t/r), rsin(t/r),s)

The corresponding variational vector field is X5(¢) = (0,0, 1).

(d) We need 2n = 4 linearly independent vector fields. We have already found two, and observe that X; and
X5 are both orthogonal and clearly linear independent, so they form a basis of the space of orthogonal
Jacobi fields. We can also take X3(t) = ¢/(¢) and Xy = t/(¢), all of them together form a basis.

(e) Assume that J(0) = J(tg) = 0 for some J € J.. Since J(0) = 0, J should be a linear combination of X;
and X3. However, such a non-zero linear combination never vanishes except for t = 0.

5.3. Jacobi fields on manifolds of constant curvature.
Let M be a Riemannian manifold of constant sectional curvature K, and ¢ : [0,1] — M be a
geodesic parametrized by arc length. Let J : [0,1] — TM be an orthogonal Jacobi field along ¢
(i.e. (J(t),d(t)) =0 for every t € [0,1]).

(a) Show that R(J,d)d = KJ.
(b) Let Z1,Z : [0,1] — TM be parallel vector fields along ¢ with Z1(0) = J(0), Z»(0) = £2(0).

Show that '
cos(tV/I) 21 (t) + 2200 7, (1) if K >0,
J(t) = { Zy(t) + tZ(t) if K =0,
cosh(tv/=K) Z1(t) + TR 7,(1) if K < 0.

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at ¢t = 0
is the same as for J(t).

Solution:
(a) We conclude from Exercise 3.4 that
]’%(’Ul7 ’UQ)’US = K(<7}2, ’U3>’l}1 — <’U17 7}3>U2).

This implies
R(J, ) = K({d, )T — (J,)).

Since ||c'||> =1 and J_L¢/, we obtain
R(J, ) = KJ.



(b) We only consider the case K > 0, all other cases are similar. The vector field

B sin(tvK)
J(t) = cos(tVK) Zy (t) + VK Zo(t)
satisfies J(0) = Z1(0) and
%(t) = VR sn(tVE)Z1 () + cos(tVE) Zo 1),

which implies ZZ(0) = Z5(0). Obviously, we have

%(f) = —K cos(tVK) Z1(t) — VK sin(tVK) Zy(t) = =K J (t),

and therefore we obtain
D%J
dt?

() + KJ(t) = 0,

i.e., J satisfies the Jacobi equation.



