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Riemannian Geometry IV, Solutions 8 (Week 18)

8.1. Recall that a Riemannian manifold is called homogeneous if the isometry group of M acts
on M transitively, i.e. for every p, q ∈ M there exists an isometry of M taking p to q.
Show that a homogeneous manifold is complete.

Solution: According to the theorem of Hopf – Rinow, it suffices to show that M is geodesically
complete. Suppose that some geodesic γ(t) = expp(tv), ‖v‖ = 1 is not defined on R, let a be the
supremum of all τ such that γ(τ) is defined. We need to show that it is possible to extend γ(t)
to an interval (a− ε, a+ ε) for some ε > 0.

Take arbitrary point q ∈ M . There exists δ > 0 such that the exponential map on Bδ(0q) is a

diffeomorphism. Let f be an isometry of M taking q to γ(a−δ/2). Denote w = Df−1γ′(a−δ/2).

Then the geodesic f(expq(wt)) coincides with γ(a − δ/2 + t) for 0 ≤ t < δ/2. However, due

to the choice of δ, the geodesic expq(wt) is defined for all |t| < δ. Therefore, we can define

γ(a− δ/2 + t) = f(expq(wt)) for δ/2 ≤ t < δ, and thus we extend the geodesic γ past t = a.

8.2. Let (M, g) be a Riemannian manifold and v1, . . . , vn ∈ TpM be an orthonormal basis. We
know from Exercise 10.4 for the geodesic normal coordinates ϕ : Bε(p)→ Bε(0) ⊂ Rn,

ϕ−1(x1, . . . , xn) = expp(
∑

xivi)

that ∂
∂xi
|p = vi and ∇ ∂

∂xi

∂
∂xj

= 0. Define an orthonormal frame E1, . . . , En : Bε(p)→ TM

by Gram – Schmidt orthonormalization, i.e.,

F1(q) :=
∂

∂x1

∣∣∣
q
, E1(q) :=

1

‖F1(q)‖
F1(q),

...

Fk(q) :=
∂

∂xk

∣∣∣
q
−

k−1∑
j=1

〈
∂

∂xk

∣∣∣
q
, Ej(q)

〉
Ej(q), Ek(q) :=

1

‖Fk(q)‖
Fk(q),

...

By construction, we have Ei(p) = vi and E1(q), . . . , En(q) are orthonormal in TqM for all
q ∈ Bε(p).

(a) Prove by induction on k that (
∇ ∂

∂xi

Fk

)
(p) = 0,

∇ ∂
∂xi

〈Fk, Fk〉−1/2(p) = 0,(
∇ ∂

∂xi

Ek

)
(p) = 0,

for all i ∈ {1, . . . , n}.



(b) Show that
(∇Ei

Ej) (p) = 0

for all i, j ∈ {1, . . . , n}.

Solution:

(a) Induction proof for (
∇ ∂

∂xi

Fk

)
(p) = 0, (1)

∇ ∂
∂xi

〈Fk, Fk〉−1/2(p) = 0, (2)(
∇ ∂

∂xi

Ek

)
(p) = 0, (3)

for all i ∈ {1, . . . , n}.
One easily checks (1), (2), (3) for k = 1. Assume all three equations hold for k. Then we
obtain (

∇ ∂
∂xi

Fk+1

)
(p) =

(
∇ ∂

∂xi

∂

∂xk+1

)
(p)− ∂

∂xi

∣∣∣
p

k∑
j=1

〈
∂

∂xk+1
, Ej

〉
Ej .

Using at the right hand side the product rule, the Riemannian property of the Levi-Civita
connection, and the induction hypothesis ∇ ∂

∂xi

Ej(p) = 0 for 1 ≤ j ≤ k, we conclude that

the whole expression vanishes. Next, we obtain

∇ ∂
∂xi

〈Fk+1, Fk+1〉−1/2(p) = − 1

‖Fk+1(p)‖3
〈∇ ∂

∂xi

Fk+1, Fk+1〉(p),

which implies that also this expression vanishes because of (1). Finally,(
∇ ∂

∂xi
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)
(p) = ∇ ∂

∂xi

〈Fk+1, Fk+1〉−1/2(p)Fk+1(p) +
1

‖Fk+1(p)‖

(
∇ ∂

∂xi
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)
(p),

which vanishes again because of (1) and (2). This finishes the induction procedure.

(b) We conclude
(∇EiEj) (p) = ∇Ei(p)Ej = 0

from (3), since Ei(p) is just a linear combination of the basis vectors ∂
∂xk

.

8.3. Second Bianchi Identity
Let (M, g) be a Riemannian manifold and R be the curvature tensor, defined by

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.

(a) Let E1, . . . , En : Bε(p)→ TM be the orthonormal frame introduced in Exercise 8.2.
For simplicity, let ei = Ei(p) and Eij = [Ei, Ej]. Show that

∇R(ei, ej, ek, el, em) = 〈∇em∇Ek
∇El

Ei −∇em∇El
∇Ek

Ei −∇em∇Ekl
Ei, ej〉.

(b) Using (a) and the Riemannian curvature tensor, derive

∇R(ei, ej, ek, el, em) +∇R(ei, ej, el, em, ek) +∇R(ei, ej, em, ek, el)

= 〈∇[Emk,El]+[Ekl,Em]+[Elm,Ek]Ei, ej〉



(c) Use Jacobi identity and linearity to prove the Second Bianchi Identity:

∇R(X, Y, Z,W, T ) +∇R(X, Y,W, T, Z) +∇R(X, Y, T, Z,W ) = 0,

for X, Y, Z,W, T vector fields on M .

Solution:

(a) Note that Ers(p) = ∇erEs −∇esEr = 0. Therefore,

∇R(ei, ej , ek, el, em) = em(〈R(Ei, Ej)Ek, El〉) = em(〈R(Ek, El)Ei, Ej〉)
= 〈∇em∇Ek

∇El
Ei −∇em∇El

∇Ek
Ei −∇em∇Ekl

Ei, ej〉.

(b) (a) implies that

∇R(ei, ej , ek, el, em) +∇R(ei, ej , el, em, ek) +∇R(ei, ej , em, ek, el)

= 〈∇em∇Ek
∇El

Ei +∇ek∇El
∇EmEi +∇el∇Em∇Ek

Ei

−∇em∇El
∇Ek

Ei −∇el∇Ek
∇EmEi −∇ek∇Em∇El

Ei

−∇em∇Ekl
Ei −∇ek∇Elm

Ei −∇el∇Emk
Ei, ej〉

= 〈R(em, ek,∇elEi) +∇Emk(p)∇El
Ei −∇el∇Emk

Ei

+R(ek, el,∇emEi) +∇Ekl(p)∇EmEi −∇em∇Ekl
Ei

+R(el, em,∇ekEi) +∇Elm(p)∇Ek
Ei −∇ek∇Elm

Ei, ej〉.

Using ∇erEs = 0, all above curvature terms vanish and this result simplifies to

∇R(ei, ej , ek, el, em) +∇R(ei, ej , el, em, ek) +∇R(ei, ej , em, ek, el)

= 〈R(Emk(p), el, ei) +∇[Emk,El]Ei +R(Ekl(p), em, ei) +∇[Ekl,Em]Ei

+R(Elm(p), ek, ei) +∇[Elm,Ek]Ei, ej〉.

Using Ers(p) = 0, this simplifies further to

∇R(ei, ej , ek, el, em) +∇R(ei, ej , el, em, ek) +∇R(ei, ej , em, ek, el)

= 〈∇[Emk,El]+[Ekl,Em]+[Elm,Ek]Ei, ej〉.

(c) Jacobi identity tell us that [Emk, El] + [Ekl, Em] + [Elm, Ek] = 0, and therefore we obtain

∇R(ei, ej , ek, el, em) +∇R(ei, ej , el, em, ek) +∇R(ei, ej , em, ek, el) = 0.

Since this holds for any choice of basis vectors in every slot, we obtain the same result for
any choice of arbitrary tangent vectors in TpM in each slot, by linearity.

8.4. Schur Theorem
Let (M, g) be a connected Riemannian manifold of dimension n ≥ 3 with the following
property: there is a function f : M → R such that, for every p ∈ M , the sectional
curvature of all 2-planes Π ⊂ TpM satisfies

K(Σ) = f(p).

(a) Define R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉 and

R′(X, Y, Z,W ) = 〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉.

Use Exercises 3.4 and 7.3 to show that ∇R(X, Y, Z,W,U) = (Uf)R′(X, Y, Z,W )
(for the definition of the covariant derivative of a tensor, see Exercise 9.3).



(b) Use the Second Bianchi Identity (see Exercise 8.3) to show that

(Tf)(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉)
+ (Zf)(〈X,T 〉〈Y,W 〉 − 〈X,W 〉〈Y, T 〉)

+ (Wf)(〈X,Z〉〈Y, T 〉 − 〈X,T 〉〈Y, Z〉) = 0.

(c) Fix a point p ∈M and choose X(p), Z(p) ∈ TPM arbitrary. Because n ≥ 3, we can
choose W,Y such that

〈Z(p),W (p)〉p = 〈Z(p), Y (p)〉p = 〈Y (p),W (p)〉p = 0,

and ‖Y (p)‖ = 1. Choose T = Y . Show that this choice yields

〈(Wf)(p)Z(p)− (Zf)(p)W (p), X(p)〉(p) = 0,

and conclude that we have (Zf)(p) = 0.

(d) Prove Schur Theorem: show that f is a constant function, i.e., there is a C ∈ R such
that f(p) = C for all p ∈M .

Solution:

(a) We know from Exercise 7.3(b) that the tensor R′ is parallel, i.e., ∇R′ = 0. We conclude
from (the proof of) Exercise 3.4 that R = fR′, and therefore

∇R(X,Y, Z,W,U) = (Uf)R′(X,Y, Z,W ).

(b) The Second Bianchi Identity tells us that

∇R(X,Y, Z,W, T ) +∇R(X,Y,W, T, Z) +∇R(X,Y, T, Z,W ) = 0,

which yields, using the definition of R′:

0 = (Tf)(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉)
+ (Zf)(〈X,T 〉〈Y,W 〉 − 〈X,W 〉〈Y, T 〉)

+ (Wf)(〈X,Z〉〈Y, T 〉 − 〈X,T 〉〈Y,Z〉).

(c) Using the relations 〈Z(p),W (p)〉 = 〈Z(p), Y (p)〉 = 〈Y (p),W (p)〉 = 0, ‖Y (p)‖ = 1 and
T = Y , we conclude that, at p

0 = (Tf)(p)(〈X(p),W (p)〉 · 0− 〈X(p), Z(p)〉 · 0)

+ (Zf)(p)(〈X(p), T (p)〉 · 0− 〈X(p),W (p)〉 · 1)

+ (Wf)(p)(〈X(p), Z(p)〉 · 1− 〈X(p), T (p)〉 · 0)

= 〈(Wf)(p)Z(p)− (Zf)(p)W (p), X(p)〉.

(d) Since Z(p) and W (p) are linearly independent and X(p) ∈ TPM was arbitrary, we conclude
that both (Wf)(p) = 0 and (Zf)(p) = 0. SInce Z(p) was arbitrary, f must be locally
constant. Since M is connected, f is globally constant.


