Differential Geometry III, Solutions 1 (Week 1)

1.3. (\star) An epicycloid $\boldsymbol{\alpha}$ is obtained as the locus of a point on the circumference of a circle of radius r which rolls without slipping on a circle of the same radius.
(a) Sketch $\boldsymbol{\alpha}$.
(b) Show that the epicycloid can be parametrized by

$$
\boldsymbol{\alpha}(u)=(2 r \sin u-r \sin 2 u, 2 r \cos u-r \cos 2 u), \quad u \in \mathbb{R}
$$

Find the length of $\boldsymbol{\alpha}$ between the singular points at $u=0$ and $u=2 \pi$.

Solution:

The graph of the epicycloid is illustrated below for the value $r=1$.

The inner (green) circle centered at $(0,0)$ is fixed, and the second circle C rotates around it with a marked point on its perimeter tracing out the epicycloid. This point is at the bottom of the rotating circle at the moment $u=0$ when the rotating circle is just on top of the fixed circle, i.e., at position $(0, r)$. As u increases, the center of C moves clockwise around the origin, and so does the point of contact between the fixed and the rotating circle, and also so does the marked point around the center of C in relation to the point of contact.

At the time u the center of the rotating circle C is located at $(2 r \sin u, 2 r \cos u)$. To this moment C has rotated clockwise around its moving center by a total length of $2 r u$, where u is measured in radians. Therefore, the point of contact between the two circles, seen from the moving center of C, has moved clockwise by the angle u around its moving center, and the position of the point of contact relative to this moving center is $(r \sin (\pi+u), r \cos (\pi+u))$. The marked point has moved clockwise away from the point of contact by the
same angle, and is therefore at position $(r \sin (\pi+2 u), r \cos (\pi+2 u))$ relative to the center of the moving circle. This means that the marked point lies at

$$
(2 r \sin u, 2 r \cos u)+(r \sin (\pi+2 u), r \cos (\pi+2 u))=(2 r \sin u-r \sin 2 u, 2 r \cos u-r \cos 2 u)
$$

Now let

$$
\boldsymbol{\alpha}(u)=(2 r \sin u-r \sin 2 u, 2 r \cos u-r \cos 2 u)
$$

Then

$$
\begin{aligned}
\boldsymbol{\alpha}^{\prime}(u) & =2 r(\cos u-\cos 2 u,-(\sin u-\sin 2 u)) \\
\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2} & =4 r^{2}(2-2(\cos (-u) \cos (2 u)-\sin (-u) \sin (2 u)) \\
& =4 r^{2}(2-2 \cos (2 u-u))=4 r^{2}(2-2 \cos u) \\
& =4 r^{2}(2-2(\cos (u / 2) \cos (u / 2)-\sin (u / 2) \sin (u / 2))) \\
& =16 r^{2} \sin ^{2}(u / 2)
\end{aligned}
$$

This implies that $\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|=4 r \sin (u / 2)$ and

$$
l(\boldsymbol{\alpha})=\int_{0}^{2 \pi}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| d u=4 r \int_{0}^{2 \pi} \sin \frac{u}{2} d u=4 r\left(-\left.2 \cos \frac{u}{2}\right|_{0} ^{2 \pi}\right)=-8 r(\cos \pi-\cos 0)=16 r .
$$

1.4. (\star) (a) Let $\boldsymbol{\alpha}(u)$ and $\boldsymbol{\beta}(u)$ be two smooth plane curves. Show that

$$
\frac{d}{d u}(\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u))=\boldsymbol{\alpha}^{\prime}(u) \cdot \boldsymbol{\beta}(u)+\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}^{\prime}(u)
$$

where $\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u)$ denotes a Euclidean dot product of vectors $\boldsymbol{\alpha}(u)$ and $\boldsymbol{\beta}(u)$.
(b) Let $\boldsymbol{\alpha}(u): I \rightarrow \mathbb{R}^{2}$ be a smooth curve which does not pass through the origin. Suppose there exists $u_{0} \in I$ such that the point $\boldsymbol{\alpha}\left(u_{0}\right)$ is the closest to the origin amongst all the points of the trace of $\boldsymbol{\alpha}$. Show that $\boldsymbol{\alpha}\left(u_{0}\right)$ is orthogonal to $\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)$.

Solution:

(a) Let $\boldsymbol{\alpha}(u)=\left(\alpha_{1}(u), \alpha_{2}(u)\right), \boldsymbol{\beta}(u)=\left(\beta_{1}(u), \beta_{2}(u)\right)$. Then

$$
\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u)=\alpha_{1}(u) \beta_{1}(u)+\alpha_{2}(u) \beta_{2}(u)
$$

Thus,

$$
\begin{array}{r}
\frac{d}{d u}(\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u))=\frac{d}{d u}\left(\alpha_{1}(u) \beta_{1}(u)+\alpha_{2}(u) \beta_{2}(u)\right)=\alpha_{1}^{\prime}(u) \beta_{1}(u)+\alpha_{1}(u) \beta_{1}^{\prime}(u)+\alpha_{2}^{\prime}(u) \beta_{2}(u)+\alpha_{2}(u) \beta_{2}^{\prime}(u)= \\
=\left(\alpha_{1}^{\prime}(u) \beta_{1}(u)+\alpha_{2}^{\prime}(u) \beta_{2}(u)\right)+\left(\alpha_{1}(u) \beta_{1}^{\prime}(u)+\alpha_{2}(u) \beta_{2}^{\prime}(u)\right)=\boldsymbol{\alpha}^{\prime}(u) \cdot \boldsymbol{\beta}(u)+\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}^{\prime}(u)
\end{array}
$$

(b) Since the point $\boldsymbol{\alpha}\left(u_{0}\right)$ is the closest to the origin, the derivative of the function $\|\boldsymbol{\alpha}(u)\|^{2}$ vanishes at point u_{0}. Using the equality $\|\boldsymbol{\alpha}(u)\|^{2}=\boldsymbol{\alpha}(u) \cdot \boldsymbol{\alpha}(u)$ and (a), we obtain

$$
0=\left.\frac{d}{d u}\|\boldsymbol{\alpha}(u)\|^{2}\right|_{u_{0}}=\frac{d}{d u} \boldsymbol{\alpha}(u) \cdot \boldsymbol{\alpha}(u)=2 \boldsymbol{\alpha}^{\prime}\left(u_{0}\right) \cdot \boldsymbol{\alpha}\left(u_{0}\right)
$$

so $\alpha^{\prime}\left(u_{0}\right)$ and $\alpha\left(u_{0}\right)$ are orthogonal.
1.5. The second derivative $\boldsymbol{\alpha}^{\prime \prime}(u)$ of a smooth plane curve $\boldsymbol{\alpha}(u)$ is identically zero. What can be said about α ?

Solution: Since $\boldsymbol{\alpha}^{\prime \prime}(u) \equiv 0$, the tangent vector $\boldsymbol{\alpha}^{\prime}(u)$ is constant, which implies that $\boldsymbol{\alpha}(u)$ is either a constant speed parametrization of a line or just a single point.
1.6. Let $\boldsymbol{\alpha}:(0, \pi) \rightarrow \mathbb{R}^{2}$ be a curve defined by

$$
\boldsymbol{\alpha}(u)=\left(\sin u, \cos u+\log \tan \frac{u}{2}\right)
$$

The trace of $\boldsymbol{\alpha}$ is called a tractrix.
(a) Sketch $\boldsymbol{\alpha}$.
(b) Show that a tangent vector at $\boldsymbol{\alpha}\left(u_{0}\right)$ can be written as

$$
\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)=\left(\cos u_{0},-\sin u_{0}+\frac{1}{\sin u_{0}}\right)
$$

Show that $\alpha(u)$ is smooth, and it is regular everywhere except $u=\pi / 2$.
(c) Write down the equation of a tangent line $l_{u_{0}}$ to the trace of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(d) Show that the distance between $\boldsymbol{\alpha}\left(u_{0}\right)$ and the intersection of $l_{u_{0}}$ with y-axis is constantly equal to 1 .

Solution: The equation of a tangent line $l_{u_{0}}$ to the trace of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$ can be written as $r(v)=\boldsymbol{\alpha}\left(u_{0}\right)+$ $v \boldsymbol{\alpha}^{\prime}\left(u_{0}\right)$, or

$$
r(v)=\left(\sin u_{0}+v \cos u_{0}, \cos u_{0}+\log \tan \frac{u_{0}}{2}-v \sin u_{0}+v \frac{1}{\sin u_{0}}\right)
$$

The square of the distance between $r(v)$ and $\boldsymbol{\alpha}\left(u_{0}\right)$ is equal to $v^{2}\left\|\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)\right\|^{2}$. The line intersects y-axis at $v=-\tan u_{0}$, so (the square of) the required distance is equal to

$$
\tan ^{2} u_{0}\left\|\left(\cos u_{0},-\sin u_{0}+\frac{1}{\sin u_{0}}\right)\right\|^{2}=\tan ^{2} u_{0}\left(\cos ^{2} u_{0}+\sin ^{2} u_{0}-2+\frac{1}{\sin ^{2} u_{0}}\right)=\tan ^{2} u_{0}\left(\frac{1}{\sin ^{2} u_{0}}-1\right)=1
$$

