Differential Geometry III, Solutions 10 (Week 10)

Coordinate curves, angles and area

10.1. Let $x: U \rightarrow S$ be a local parametrization of a regular surface S, and denote by E, F, G the coefficients of the first fundamental form in this parametrization. Show that the tangent vector $a \partial_{u} \boldsymbol{x}+b \partial_{v} \boldsymbol{x}$ bisects the angle between the coordinate curves if and only if

$$
\sqrt{G}(a E+b F)=\sqrt{E}(a F+b G) .
$$

Further, if

$$
\boldsymbol{x}(u, v)=\left(u, v, u^{2}-v^{2}\right),
$$

find a vector tangential to S which bisects the angle between the coordinate curves at the point $(1,1,0) \in S$.

Solution:

The cosine of the angle of the vector $\boldsymbol{w}=a \partial_{u} \boldsymbol{x}+b \partial_{v} \boldsymbol{x}$ with coordinate curve $v=$ const is equal to

$$
\frac{\left\langle a \partial_{u} \boldsymbol{x}+b \partial_{v} \boldsymbol{x}, \partial_{u} \boldsymbol{x}\right\rangle}{\|w\|\left\|\partial_{u} \boldsymbol{x}\right\|}=\frac{a E+b F}{\|w\| \sqrt{E}}
$$

Similarly, the cosine of the angle of \boldsymbol{w} with coordinate curve $u=$ const is equal to

$$
\frac{\left\langle a \partial_{u} \boldsymbol{x}+b \partial_{v} \boldsymbol{x}, \partial_{v} \boldsymbol{x}\right\rangle}{\|w\|\left\|\partial_{v} \boldsymbol{x}\right\|}=\frac{a F+b G}{\|w\| \sqrt{G}}
$$

The equality of the cosines

$$
\frac{a E+b F}{\|w\| \sqrt{E}}=\frac{a F+b G}{\|w\| \sqrt{G}}
$$

is equivalent to

$$
\sqrt{G}(a E+b F)=\sqrt{E}(a F+b G)
$$

as required.
For

$$
\boldsymbol{x}(u, v)=\left(u, v, u^{2}-v^{2}\right),
$$

we have

$$
\begin{aligned}
\partial_{u} \boldsymbol{x}(u, v) & =(1,0,2 u), \\
\partial_{v} \boldsymbol{x}(u, v) & =(0,1,-2 v),
\end{aligned}
$$

which implies that

$$
E(u, v)=1+4 u^{2}, \quad F(u, v)=-4 u v, \quad G(u, v)=1+4 v^{2} .
$$

The point $(1,1,0)$ has coordinates $(u, v)=(1,1)$, so we have $E=G=5, F=-4$. Thus, we obtain the following equation on (a, b):

$$
\sqrt{5}(5 a-4 b)=\sqrt{5}(-4 a+5 b),
$$

which is equivalent to $a=b$. Thus, the vector $\partial_{u} \boldsymbol{x}+\partial_{v} \boldsymbol{x}$ bisects the angle.
10.2. Find two families of curves on the helicoid parametrized by

$$
\boldsymbol{x}(u, v)=(v \cos u, v \sin u, u)
$$

which, at each point, bisect the angles between the coordinate curves. (Show that they are given by $u \pm \sinh ^{-1} v=c$, where c is a constant on each curve in the family.)

Solution: We have

$$
\begin{aligned}
\partial_{u} \boldsymbol{x}(u, v) & =(-v \sin u, v \cos u, 1) \\
\partial_{v} \boldsymbol{x}(u, v) & =(\cos u, \sin u, 0)
\end{aligned}
$$

which implies that

$$
E(u, v)=1+v^{2}, \quad F(u, v)=0, \quad G(u, v)=1,
$$

so the equation from Exercise 10.1 becomes

$$
a \sqrt{v^{2}+1}=b
$$

The curve $u-\sinh ^{-1} v=c$ can be parametrized by $\boldsymbol{\alpha}(u)=(u, \sinh (u-c))$, so

$$
\boldsymbol{\alpha}^{\prime}(u, v)=\partial_{u} \boldsymbol{x}+\cosh (u-c) \partial_{v} \boldsymbol{x}=\partial_{u} \boldsymbol{x}+\cosh (u-c) \partial_{v} \boldsymbol{x}=\partial_{u} \boldsymbol{x}+\sqrt{v^{2}+1} \partial_{v} \boldsymbol{x}
$$

as required.
The curve $u+\sinh ^{-1} v=c$ can be parametrized by $\boldsymbol{\beta}(u)=(u,-\sinh (u-c))$, so

$$
\boldsymbol{\beta}^{\prime}(u, v)=\partial_{u} \boldsymbol{x}-\cosh (u-c) \partial_{v} \boldsymbol{x}=\partial_{u} \boldsymbol{x}-\cosh (u-c) \partial_{v} \boldsymbol{x}=\partial_{u} \boldsymbol{x}-\sqrt{v^{2}+1} \partial_{v} \boldsymbol{x}
$$

Then

$$
\left\langle\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right\rangle=E-\left(v^{2}+1\right) G=0,
$$

which implies that $\boldsymbol{\beta}^{\prime}$ bisects the angle between $\partial_{u} \boldsymbol{x}$ and $-\partial_{v} \boldsymbol{x}$.
10.3. The coordinate curves of a parametrization $\boldsymbol{x}(u, v)$ constitute a Chebyshev net if the lengths of the opposite sides of any quadrilateral formed by them are equal.
(a) Show that a necessary and sufficient condition for this is

$$
\frac{\partial E}{\partial v}=\frac{\partial G}{\partial u}=0 .
$$

(b) Show that if coordinate curves constitute a Chebyshev net, then it is possible to reparametrize the coordinate neighborhood in such a way that the new coefficients of the first fundamental form are

$$
E=1, \quad F=\cos \vartheta, \quad G=1
$$

where ϑ is the angle between coordinate curves.

Solution:

(a) Assume that coordinate curves constitute a Chebyshev net. Consider a quadrilateral with vertices $\left(u_{0}, v_{0}\right),\left(u_{1}, v_{0}\right),\left(u_{0}, v_{1}\right),\left(u_{1}, v_{1}\right)$ formed by coordinate curves. The length of the side with vertices $\left(u_{0}, v_{1}\right),\left(u_{1}, v_{1}\right)$ is equal to

$$
\int_{u_{0}}^{u_{1}}\left\|\partial_{u} \boldsymbol{x}\left(u, v_{1}\right)\right\| \mathrm{d} u=\int_{u_{0}}^{u_{1}} \sqrt{E\left(u, v_{1}\right)} \mathrm{d} u
$$

Thus, the integral $\int_{u_{0}}^{u_{1}} \sqrt{E\left(u, v_{1}\right)} \mathrm{d} u$ does not depend on v_{1}, i.e. it is a function of u_{1} only. Differentiating it by u_{1}, we see that $\sqrt{E\left(u_{1}, v_{1}\right)}$ is also a function of u_{1} only, so $E(u, v)$ does not depend on v. The considerations for G are similar, and the converse statement is straightforward.
(b) Take

$$
\tilde{u}(u)=\int \sqrt{E(u)} \mathrm{d} u
$$

Then \tilde{u} is parametrized by arc length, so $\tilde{E}(\tilde{u}) \equiv 1$. Similarly, we can make $\tilde{G}(\tilde{v}) \equiv 1$. Now F is equal to the cosine of the angle by definition.
10.4. Show that a surface of revolution can always be parametrized so that

$$
E=E(v), \quad F=0, \quad G=1
$$

Solution: Parametrize the surface by

$$
\boldsymbol{x}=(f(v) \cos u, f(v) \sin u, g(v)),
$$

where $\boldsymbol{\alpha}(v)=(f(v), 0, g(v))$ is the generating curve. Then

$$
\begin{aligned}
\partial_{u} \boldsymbol{x} & =(-f(v) \sin u, f(v) v \cos u, 0) \\
\partial_{v} \boldsymbol{x} & =\left(f^{\prime}(v) \cos u, f^{\prime}(v) \sin u, g^{\prime}(v)\right),
\end{aligned}
$$

which implies that

$$
E(u, v)=f^{2}(v), \quad F(u, v)=0, \quad G(u, v)=f^{\prime 2}(v)+g^{\prime 2}(v)=\left\|\boldsymbol{\alpha}^{\prime}\right\|^{2}
$$

Parametrizing $\boldsymbol{\alpha}(v)$ by arc length we obtain a required parametrization of the surface.
10.5. Let S be the surface $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}-y^{2}\right\}$ and let \mathcal{F} be the family of curves on S obtained as the intersection of S with the planes $z=$ const. Find the family of curves on S which meet \mathcal{F} orthogonally and show that they are the intersections of S with the family of hyperbolic cylinders $x y=$ const.

Solution:
A (part of a) curve $x^{2}-y^{2}=c_{1}$ on S can be parametrized by $\boldsymbol{\alpha}(y)=\left(\sqrt{y^{2}+c}, y\right)$, so

$$
\boldsymbol{\alpha}^{\prime}(y)=\frac{y}{\sqrt{y^{2}+c_{1}}} \partial_{x}+\partial_{y}=\frac{y}{x} \partial_{x}+\partial_{y}
$$

A curve $x y=c_{2}$ on S can be paranetrized by $\boldsymbol{\beta}(x)=\left(x, \frac{c}{x}\right)$, so

$$
\boldsymbol{\beta}^{\prime}(x)=\partial_{x}-\frac{c_{2}}{x^{2}} \partial_{y}=\partial_{x}-\frac{y}{x} \partial_{y}
$$

Now we recall that the coefficients of the first fundamental form found in Exercise 10.1 are

$$
E(u, v)=1+4 x^{2}, \quad F(u, v)=-4 x y, \quad G(u, v)=1+4 y^{2},
$$

so we compute the inner product of $\boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\beta}^{\prime}$ to get

$$
\begin{aligned}
& \left\langle\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right\rangle=\left\langle\frac{y}{x} \partial_{x}+\partial_{y}, \partial_{x}-\frac{y}{x} \partial_{y}\right\rangle=\frac{y}{x} E+F-\frac{y^{2}}{x^{2}} F-\frac{y}{x} G= \\
& \quad=\frac{y}{x}\left(1+4 x^{2}\right)+4 x y\left(\frac{y^{2}}{x^{2}}-1\right)-\frac{y}{x}\left(1+4 y^{2}\right)=\frac{y}{x}+4 x y+\frac{4 y}{x}-4 x y-\frac{y}{x}-\frac{4 y}{x}=0
\end{aligned}
$$

Note that we could avoid computations on S : one could consider $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ as curves in \mathbb{R}^{3}, and keeping in mind that z-coordinate of $\boldsymbol{\alpha}^{\prime}$ is equal to zero, the dot product of $\boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\beta}^{\prime}$ is equal to $\left\langle\left(\frac{y}{x}, 1,0\right) \cdot\left(1,-\frac{y}{x}, z^{\prime}(x)\right)\right\rangle=0$.
10.6. Using the notation of Exercise 10.2, show that the family of curves orthogonal to the family

$$
v \cos u=\text { const }
$$

is the family defined by $\left(1+v^{2}\right) \sin ^{2} u=$ const.

Solution:

The coefficients of the first fundamental form found in Exercise 10.2 are

$$
E(u, v)=1+v^{2}, \quad F(u, v)=0, \quad G(u, v)=1
$$

A curve $v \cos u=c_{1}$ on S can be parametrized by $\boldsymbol{\alpha}(u)=\left(u, c_{1} / \cos u\right)$, so

$$
\boldsymbol{\alpha}^{\prime}(u)=\left(1,-c_{1} \sin u / \cos ^{2} u\right)=(1,-v \tan u)
$$

A curve $\left(1+v^{2}\right) \sin ^{2} u=c_{2}$ on S can be paranetrized by $\boldsymbol{\beta}(u)=\left(u,-\sqrt{\frac{c_{2}}{\sin ^{2} u}-1}\right)$, so

$$
\boldsymbol{\beta}^{\prime}(u)=\left(1, \frac{1}{\tan u}\left(v+\frac{1}{v}\right)\right) .
$$

Computing the inner product of $\boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\beta}^{\prime}$ we obtain

$$
\left\langle\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right\rangle=E-v \tan u \frac{1}{\tan u}\left(v+\frac{1}{v}\right)=1+v^{2}-\left(v^{2}+1\right)=0 .
$$

