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Differential Geometry III, Solutions 1 (Week 11)

Isometries and conformal maps - 1

1.1.

1.2.

Let a > 0. Construct explicitly a local isometry from the plane P = { (u,v,0) € R? |u,v € R} onto
the cylinder S = { (z,y,2) € R3 |22 +¢y* = a?}.

Solution:
A canonical parametrization of the plane P is
x:U=R?>— P, z(u,v) = (u,v,0).
Clearly, ,, = (1,0,0), , = (0,1,0) and E = (x,, z,) = 1, F = (xy,x,) =0 and G = (z,, z,) = 1.
We define a candidate for the isometry via this parametrisation
fiP—5, f(u,v,0) := (acos(wu), asin(wu),v)

for some positive constant w > 0 (we could also interchange the role of u and v) (more precisely, we define
fox: U — S). In order to check that f is a local isometry, we just need to calculate the coefficents of the
fundamental form of S with respect to the (local) parametrisation f o, and see whether they equal E, F
and G. But here we have

fu=(fox), = (—awsin(wu), aw cos(wu),0) and f, = (fox), =(0,0,1),

so that B B B

E:<fuafu>:a2w2v F:<fu7fv>:0 and GZ(fmfv>:]-
We have F = F and G = G. In order to have E = E, we need w = 1/a, then f is a local isometry (by
Proposition 8.15).

(%) Let b be a positive number such that v/1 + b? is an integer n. Let S be the circular cone obtained
by rotating the curve given by a(v) = (v, 0, bv), v > 0, about the z-axis. Let the coordinate zy-plane
P be parametrized by polar coordinates (r,d):

x: U =(0,00) x (0,21) — P, x(r,9) = (rcosd,rsind,0).

Show that the map f: P\ {(0,0,0)} — S defined on (U) by

1
f(@(r,9)) = = (r cosnd, rsinnd, br)

n

is a local isometry on x(U).

Solution:

We have
x, = (cos,sin?,0) and xy = (—rsind,rcosd,0),

so that the coeflicients of the first fundamental form of P with respect to the parametrization & (polar
coordinates — parametrized P\ {0}) are

E(r,9) =1, F(r,9)=0 and G(r,9) =12



Now calculate

foim (fo:c),.:%(cos(nﬂ),sin(nﬁ),b) and  fy = (f o)y = (—rsin(nd), r cos(nd), 0),

so that

~ 2 ~ ~
o <f,.,fr>:1n+72b, Fim (fofo) =0 and G:= (fg, fs) =12

By assumption, (1 + b2)/n? = 1, so that E = E, F = F and G = G, hence f is a local isometry by
Proposition 8.15.

1.3. Let 51,599,535 be regular surfaces.

(a)
(b)

(c)

Suppose that f: S] — So and g: So — S3 are local isometries. Prove that go f: 57 — S3
is a local isometry.

Suppose that f: S — S and ¢g: So — S3 are conformal maps with conformal factors
A: S1 — (0,00) and p: So — (0, 00), respectively. Prove that go f: S; — S3 is a conformal
map and calculate its conformal factor. (The conformal factor of a conformal map is the
function appearing as factor in front of the inner product in the definition.)

Let f and g be conformal maps with conformal factors A and u as in the previous part. Find
a condition on A and p such that go f is a (local) isometry.

Solution:

(a)

By the definition of a local isometry,

<dp1f(vl)7dp1f(w1)>f(p1) = <v1»w1>p1 and <dng<v2)adp2f(w2>>g(p2) = <'U27w2>p2

for all p; € S1, v1,wy € T, S1 and pa € Sz, V2, ws € T}, Ss.
This notation is also already part ot the solution: applying these two equations with ps = f(p1),
vy = dp, f(v1) and wy = dp,, f(w1), and using the chain rule

dp, (g0 f)(w1) = dyp)9(dyp, f(w1))

for all p; € S1 and w; € T}, 51, we obtain

(dp, (g0 f)(01),dp, (g0 f)f(W1))(gor)p1) = (drp1)9(dp, (V1)) A1) 9(dpy (W1))) (905 (p1))
= (dp, (v1), dp, (W1)) (1)
= <’U1, w1>;01
using the chain rule for the first, the isometry of g for the second and the isometry of f for the last
equality. Hence we have shown that g o f) is a local isometry using the definition.

The proof is almost the same as the one of the first part: since f and g are conformal maps, we have

(dp, f(01), dp, f(W1)) (1) = AMp1)(V1,W1)p,  and  (dp,g(v2), dp, f(W2)) g(py) = p(P2){V2, W2)p,

for all VIS Sl, v, W1 € TplSl and py € 52, Vo, Wo € TPQSQ.
Applying these two equations with pa = f(p1), va = dp, f(v1) and ws = d,, f(w1), and using again the
chain rule we obtain

(dp, (g0 f)(v1),dp, (g0 ) f (1)) (gor)pr) = {dsp1)9(dp, (V1)) d(py)9(dp, (W1))) (g5 (p1))
= N(f(pl))<dp1 ('Ul), dP1 ('wl»f(m)
= pu(f(p1))A(p1){v1, w1)p,

using the chain rule for the first, the conformality of g for the second and the conformality of f for the
last equality. Hence we have shown that g o f) is a conformal map with conformal factor

(o f)-A: 81— (0,00,  p1+= p(f(p1))A(p1)-



(c) The third part is again rather trivial. We want that (u o f) - A equals the constant function 1 on Sy,

i.e., that
1
w(f(p1)) =
T =55
for all p; € S;. In particular, we do not need any restriction on the behaviour of u outside the range
f(S1) of f

1.4. Let S be the surface of revolution parametrized by

. . T W
x(u,v) = (cosvcosu, cosvsinu, —sinv + logtan<z + 5)),

where 0 < u < 27,0 < v < w/2. Let S; be the region
Si={z(u,v)|0<u<m,0<v<m/2}
and let S5 be the region
So ={x(u,v)|0<u<2m,7/3<v<m/2}.
Show that the map
x(u,v) — cc<2u, arccos(% cos v))
is an isometry from S7 onto Ss.

Solution:

The map f: S; — Sy is actually a bijection (see below), so one can prove that it gives rise to a local
parametrization; we will use Prop. 8.15 from the lectures and show that the coefficients E, F' and G (w.r.t.
the parametrization x) are the same as the coefficients E, F' and G w.r.t the parametrization

~ 1
z(u,v) = a:(?u7 arccos(§ cos v))
Let us calculate FE, F' and G first. We have

@, = (— cosvsinu, cosv cosu, 0), @, = (—sinvcosu, —sinvsinu, —cosv + 1/ cosv),

as the derivative of g with g(v) = —sinv + logtan(w/4 + v/2) is

g'(v) = —cosv + 1(tan(z + g))il tan'(z + 3)

2 4 2 4 2
4
o cosvd — cos(m/4+v/2)
2sin(m/4 +v/2) cos?(w/4 + v/2)
1
= cosvd sin(mw/2 + v)
1 —cos?v+1  sin®v
= —COsV + = = .
cosv cosv cosv
In particular,
E(u,v) = cos? v, F(u,v) =0,
2
G(u,v) = sin?v + ( — cos v)
CoS v
=1—cos®v+ 5 — 2+ cos? v
cos? v
_ 1 1:1—COS2U=taDZU

cos2 v cos2 v



Let us now calculate the coefficients w.r.t. the parametrization £ (make sure you use the arguments of the
functions correctly):

fulu,v) = Ty (u,v) = 2x,(2u, arccos(cos v/2))
Folu,v) = Ty (u,v) = ¢’ (v) 2y (2u, arccos((cos v) /2))
W oo v)/4:cv(2u, arccos((cosv)/2))

since the derivative of ¢ given by ¢(v) = arccos((cosv)/2) is

sin v
2,/1 — (cos?v)/4

¢'(v) = %(f sin v) arccos’ ((cosv)/2) =

In particular,

E(u,v) = 4E(2u, arccos(cos v/2)),

(fulu,v), fulu,v))
F(u,v) = 2¢'(0)F(...) =0

<fu(u’ v)? f’U(u’ U)>
sin® v

(folu,v), folu,v)) = Glu,v) = 10 = (cos? U)/4)G(2u,arccos(cos v/2)).

Let us now simplify these expressions in order to obtain F = Eand G=G (F = F=0is aready clear):

E(u,v) = 4E(2u, arccos(cos v/2))
= 4 cos? arccos(cos v/2))

= 4(cos 11/2)2 = cos’v = E(u,v),

as cos(arccos z) = z for z € [—1,1].
Moreover,

~ sin v

G(u,v) = 0= (0052 /4 G(2u, arccos(cos v/2))
B sin? v ( B 1)
~ 4(1 — (cosZw cos?(arccos(cos v/2))
sin? v
B ~ 4(1 — (cos?w (C082 v/4 )
sin? v 1 —cos?v/4
- ~ 4(1 — (cos?w ( cos? v /4 )
.2
= oy = 9?)

(where we use the expression of G(u,v) involving cosv only for the second equality).
Hence, by Proposition 8.15, f is a local isometry.

For f being an isometry, we also need that f:S; — Sy is a bijection: Basically, we map (u,v) € Uy =
(0,7) x (0,7/2) onto ®(u,v) := (2u, arccos((cosv)/2)) € Uy = (0,27) x (w/3,7/2), and as

Y: (0,7) — (0,27), P(u) =2u

and
v: (0,7/2) — (w/3,7/2), @(v) = arccos((cosv)/2)

are both bijections, ®: U; — Us is a bijection and hence also f = x o ® o1,



