Differential Geometry III, Homework 1 (Week 11)

Due date for starred problems: Thursday, February 2.

Isometries and conformal maps - 1

1.1. Let $a>0$. Construct explicitly a local isometry from the plane $P=\left\{(u, v, 0) \in \mathbb{R}^{3} \mid u, v \in \mathbb{R}\right\}$ onto the cylinder $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=a^{2}\right\}$.
1.2. (\star) Let b be a positive number such that $\sqrt{1+b^{2}}$ is an integer n. Let S be the circular cone obtained by rotating the curve given by $\boldsymbol{\alpha}(v)=(v, 0, b v), v>0$, about the z-axis. Let the coordinate $x y$-plane P be parametrized by polar coordinates (r, ϑ) :

$$
\boldsymbol{x}: U=(0, \infty) \times(0,2 \pi) \longrightarrow P, \quad \boldsymbol{x}(r, \vartheta)=(r \cos \vartheta, r \sin \vartheta, 0)
$$

Show that the map $f: P \backslash\{(0,0,0)\} \longrightarrow S$ defined on $\boldsymbol{x}(U)$ by

$$
f(\boldsymbol{x}(r, \vartheta))=\frac{1}{n}(r \cos n \vartheta, r \sin n \vartheta, b r)
$$

is a local isometry on $\boldsymbol{x}(U)$.
1.3. Let S_{1}, S_{2}, S_{3} be regular surfaces.
(a) Suppose that $f: S_{1} \longrightarrow S_{2}$ and $g: S_{2} \longrightarrow S_{3}$ are local isometries. Prove that $g \circ f: S_{1} \longrightarrow S_{3}$ is a local isometry.
(b) Suppose that $f: S_{1} \longrightarrow S_{2}$ and $g: S_{2} \longrightarrow S_{3}$ are conformal maps with conformal factors $\lambda: S_{1} \longrightarrow(0, \infty)$ and $\mu: S_{2} \longrightarrow(0, \infty)$, respectively. Prove that $g \circ f: S_{1} \longrightarrow S_{3}$ is a conformal map and calculate its conformal factor. (The conformal factor of a conformal map is the function appearing as factor in front of the inner product in the definition.)
(c) Let f and g be conformal maps with conformal factors λ and μ as in the previous part. Find a condition on λ and μ such that $g \circ f$ is a (local) isometry.
1.4. Let S be the surface of revolution parametrized by

$$
\boldsymbol{x}(u, v)=\left(\cos v \cos u, \cos v \sin u,-\sin v+\log \tan \left(\frac{\pi}{4}+\frac{v}{2}\right)\right),
$$

where $0<u<2 \pi, 0<v<\pi / 2$. Let S_{1} be the region

$$
S_{1}=\{\boldsymbol{x}(u, v) \mid 0<u<\pi, 0<v<\pi / 2\}
$$

and let S_{2} be the region

$$
S_{2}=\{\boldsymbol{x}(u, v) \mid 0<u<2 \pi, \pi / 3<v<\pi / 2\} .
$$

Show that the map

$$
\boldsymbol{x}(u, v) \mapsto \boldsymbol{x}\left(2 u, \arccos \left(\frac{1}{2} \cos v\right)\right)
$$

is an isometry from S_{1} onto S_{2}.

