Differential Geometry III, Homework 1 (Week 11)

Due date for starred problems: Thursday, February 2.

Isometries and conformal maps - 1

- **1.1.** Let a > 0. Construct explicitly a local isometry from the plane $P = \{ (u, v, 0) \in \mathbb{R}^3 | u, v \in \mathbb{R} \}$ onto the cylinder $S = \{ (x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = a^2 \}.$
- **1.2.** (\star) Let b be a positive number such that $\sqrt{1+b^2}$ is an integer n. Let S be the circular cone obtained by rotating the curve given by $\alpha(v) = (v, 0, bv), v > 0$, about the z-axis. Let the coordinate xy-plane P be parametrized by polar coordinates (r, ϑ) :

$$\boldsymbol{x}: U = (0, \infty) \times (0, 2\pi) \longrightarrow P, \quad \boldsymbol{x}(r, \vartheta) = (r \cos \vartheta, r \sin \vartheta, 0).$$

Show that the map $f: P \setminus \{(0,0,0)\} \longrightarrow S$ defined on $\boldsymbol{x}(U)$ by

$$f(\boldsymbol{x}(r,\vartheta)) = \frac{1}{n} (r \cos n\vartheta, r \sin n\vartheta, br)$$

is a local isometry on $\boldsymbol{x}(U)$.

- **1.3.** Let S_1, S_2, S_3 be regular surfaces.
 - (a) Suppose that $f: S_1 \longrightarrow S_2$ and $g: S_2 \longrightarrow S_3$ are local isometries. Prove that $g \circ f: S_1 \longrightarrow S_3$ is a local isometry.
 - (b) Suppose that $f: S_1 \longrightarrow S_2$ and $g: S_2 \longrightarrow S_3$ are conformal maps with conformal factors $\lambda: S_1 \longrightarrow (0, \infty)$ and $\mu: S_2 \longrightarrow (0, \infty)$, respectively. Prove that $g \circ f: S_1 \longrightarrow S_3$ is a conformal map and calculate its conformal factor. (The conformal factor of a conformal map is the function appearing as factor in front of the inner product in the definition.)
 - (c) Let f and g be conformal maps with conformal factors λ and μ as in the previous part. Find a condition on λ and μ such that $g \circ f$ is a *(local) isometry*.

1.4. Let S be the surface of revolution parametrized by

$$\boldsymbol{x}(u,v) = \left(\cos v \cos u, \cos v \sin u, -\sin v + \log \tan\left(\frac{\pi}{4} + \frac{v}{2}\right)\right),$$

where $0 < u < 2\pi, 0 < v < \pi/2$. Let S_1 be the region

$$S_1 = \{ \, \boldsymbol{x}(u, v) \, | \, 0 < u < \pi, 0 < v < \pi/2 \, \}$$

and let S_2 be the region

$$S_2 = \{ \, \boldsymbol{x}(u, v) \, | \, 0 < u < 2\pi, \pi/3 < v < \pi/2 \, \}.$$

Show that the map

$$\boldsymbol{x}(u,v) \mapsto \boldsymbol{x}\Big(2u,\arccos\Big(\frac{1}{2}\cos v\Big)\Big)$$

is an isometry from S_1 onto S_2 .