Differential Geometry III, Solutions 3 (Week 13)

Weingarten map, Gauss, mean and principal curvatures - 1

3.1. A local parametrization \boldsymbol{x} of a surface S in \mathbb{R}^{3} is called orthogonal provided $F=0$ (so \boldsymbol{x}_{u} and \boldsymbol{x}_{v} are orthogonal at each point). It is called principal if $F=0$ and $M=0$, where E, F, G (resp. L, M, N) are the coefficients of the first (resp. second) fundamental form.
(a) Let \boldsymbol{x} be an orthogonal parametrization. Show that, at any point $p=\boldsymbol{x}(u, v)$ on S,

$$
-d \boldsymbol{N}_{p}\left(\boldsymbol{x}_{u}\right)=\frac{L}{E} \boldsymbol{x}_{u}+\frac{M}{G} \boldsymbol{x}_{v}, \quad-d \boldsymbol{N}_{p}\left(\boldsymbol{x}_{v}\right)=\frac{M}{E} \boldsymbol{x}_{u}+\frac{N}{G} \boldsymbol{x}_{v}
$$

where \boldsymbol{N} denotes the Gauss map.
(b) Assume now that the parametrization is principal. Show that $\kappa_{1}=L / E$ and $\kappa_{2}=N / G$ are the principal curvatures. Calculate the Gauss and mean curvature in terms of E, G, L, N. Determine the principal directions.

Solution:

(a) Since $d_{p} \boldsymbol{N}$ maps $T_{p} S$ into $T_{p} S$, we can express $-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{u}\right)$ and $-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{v}\right)$ as a linear combination of \boldsymbol{x}_{u} and \boldsymbol{x}_{v}, i.e.,

$$
-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{u}\right)=a \boldsymbol{x}_{u}+b \boldsymbol{x}_{v} \quad \text { and } \quad-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{v}\right)=c \boldsymbol{x}_{u}+d \boldsymbol{x}_{v} .
$$

Multiplying both equations with $\cdot \boldsymbol{x}_{u}$ and $\cdot \boldsymbol{x}_{v}$ gives (using the definitions of the coefficients of the first and second fundamental forms and the equalities $\boldsymbol{N}_{u} \cdot \boldsymbol{x}_{u}+\boldsymbol{N} \cdot \boldsymbol{x}_{u u}=0$ etc.)

$$
L=a E+b F, \quad M=a F+b G, \quad M=c E+d F, \quad N=c F+d G,
$$

and, since $F=0$,

$$
a=\frac{L}{E}, \quad b=\frac{M}{G}, \quad c=\frac{M}{E}, \quad d=\frac{N}{G},
$$

i.e., the desired equation.
(b) If $M=0$, then the equations from the first part are

$$
-d \boldsymbol{N}_{p}\left(\boldsymbol{x}_{u}\right)=\frac{L}{E} \boldsymbol{x}_{u} \quad \text { and } \quad-d \boldsymbol{N}_{p}\left(\boldsymbol{x}_{v}\right)=\frac{N}{G} \boldsymbol{x}_{v} .
$$

Therefore, \boldsymbol{x}_{u} is an eigenvector with eigenvalue L / E, as well as \boldsymbol{x}_{v} with eigenvalue N / G. Hence the principal, Gauss and mean curvatures are

$$
\kappa_{1}=\frac{L}{E}, \quad \kappa_{2}=\frac{N}{G}, \quad K=\kappa_{1} \kappa_{2}=\frac{L N}{E G}, \quad H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)=\frac{L}{2 E}+\frac{N}{2 G}=\frac{L G+N E}{2 E G} .
$$

3.2. Calculation of the Weingarten map directly for surfaces of revolution

Let $f: J \longrightarrow(0, \infty)$ and $g: J \longrightarrow \mathbb{R}$ be smooth functions on some open interval J in \mathbb{R} and let $\boldsymbol{\alpha}: J \longrightarrow \mathbb{R}^{3}$ be a space curve given by $\boldsymbol{\alpha}(v)=(f(v), 0, g(v))$. Assume that this curve is parametrized by arc length. Let S be the surface of revolution obtained by rotating $\boldsymbol{\alpha}$ around the z-axis.
(a) Find suitable parametrizations $\boldsymbol{x}: U_{i} \longrightarrow S$ of S and determine parameter domains U_{1} and U_{2} covering the whole surface S. Calculate the normal vector \boldsymbol{N} at $\boldsymbol{x}(u, v)$
(b) Express $a, b, c, d \in \mathbb{R}$ in $-d \boldsymbol{N}_{p}\left(\boldsymbol{x}_{u}\right)=a \boldsymbol{x}_{u}+b \boldsymbol{x}_{v}$ and $-d \boldsymbol{N}_{p}\left(\boldsymbol{x}_{v}\right)=c \boldsymbol{x}_{u}+d \boldsymbol{x}_{v}$ in terms of f and g.
(c) Calculate the principal directions and principal curvatures.
(d) Calculate the Gauss and mean curvatures.
(e) Compare your results with Example 9.13 from the lectures.

Solution: The generating curve is parametrized by arc length, so $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{=} 1$.
(a) The standard parametrization of a surface of revolution is given by

$$
\boldsymbol{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v)), \quad(u, v) \in U
$$

where $U=U_{1}$ or $U=U_{2}$ and (for example)

$$
U_{1}=(-\pi, \pi) \times J, \quad U_{2}=(0,2 \pi) \times J,
$$

so that the first (angular) variable u covers all angles.
Make sure you understand why we need (at least) two parameter sets U_{1} and U_{2}.
Moreover, $(f, g$ have the argument v, and cos, sin have the argument $u)$

$$
\boldsymbol{x}_{u}=(-f \sin , f \cos , 0), \quad \boldsymbol{x}_{v}=\left(f^{\prime} \cos , f^{\prime} \sin , g^{\prime}\right),
$$

hence $\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}=\left(g^{\prime} \cos , g^{\prime} \sin ,-f^{\prime}\right)$. Since the generating curve is parametrized by arc length, $\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}$ is a unit vector, so

$$
\boldsymbol{N}=\left(g^{\prime} \cos , g^{\prime} \sin ,-f^{\prime}\right)
$$

Moreover,

$$
E=x_{u} \cdot x_{u}=f^{2}, \quad F=0, \quad G=\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1 .
$$

We also need (later on) the coefficients of the second fundamental form, so we calculate

$$
\boldsymbol{x}_{u u}=(-f \cos ,-f \sin , 0), \quad \boldsymbol{x}_{u v}=\left(-f^{\prime} \sin , f^{\prime} \cos , 0\right), \quad \boldsymbol{x}_{v v}=\left(f^{\prime \prime} \cos , f^{\prime \prime} \sin , g^{\prime \prime}\right)
$$

so that

$$
L=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}=-f g^{\prime}, \quad M=\boldsymbol{x}_{u v} \cdot \boldsymbol{N}=0, \quad \boldsymbol{N}=\boldsymbol{x}_{v v} \cdot \boldsymbol{N}=f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}
$$

(b) We multiply both equations with \boldsymbol{x}_{u} and \boldsymbol{x}_{v}, so that

$$
\begin{aligned}
& L=-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{u}\right) \cdot \boldsymbol{x}_{u}=a E+b F, \quad M=-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{u}\right) \cdot \boldsymbol{x}_{v}=a F+b G, \\
& M=-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{v}\right) \cdot \boldsymbol{x}_{u}=c E+d F, \quad N=-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{v}\right) \cdot \boldsymbol{x}_{v}=c F+d G,
\end{aligned}
$$

where we used the equalities $\boldsymbol{N}_{u} \cdot \boldsymbol{x}_{u}+\boldsymbol{N} \cdot \boldsymbol{x}_{u u}=0$ etc.
The above equations simplify to

$$
\begin{aligned}
L & =a E, & M & =b G, \\
M & =c E, & N & =d G .
\end{aligned}
$$

If $F=0$, then

$$
a=\frac{L}{E}, \quad b=\frac{M}{G}, \quad c=\frac{M}{E}, \quad d=\frac{N}{G} .
$$

If, in addition, $M=0$, then

$$
a=\frac{L}{E}, \quad b=0, \quad c=0, \quad d=\frac{N}{G}
$$

(c) We have (using the above expressions for a, b, c and d)

$$
-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{u}\right)=\frac{L}{E} \boldsymbol{x}_{u} \quad \text { and } \quad-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{v}\right)=\frac{N}{G} \boldsymbol{x}_{v},
$$

hence the basis vectors \boldsymbol{x}_{u} and \boldsymbol{x}_{v} are eigenvectors (principal directions) with eigenvalues (principal curvatures)

$$
\kappa_{1}=\frac{L}{E}=\frac{-f g^{\prime}}{f^{2}}=-\frac{g^{\prime}}{f} \quad \text { and } \quad \kappa_{2}=\frac{N}{G}=f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}
$$

(d) The Gauss and mean curvature are

$$
K=\kappa_{1} \kappa_{2}=\frac{g^{\prime}\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)}{f} \quad \text { and } \quad H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)=-\frac{g^{\prime}}{2 f}+\frac{1}{2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)
$$

3.3. Let S be the surface in \mathbb{R}^{3} defined by the equation

$$
z=\frac{1}{1+x^{2}+y^{2}}
$$

Find the principal curvatures and the umbilic points (i.e., the points where the principal curvatures are the same). Give a sketch of the surface showing the regions of the surface where the Gauss curvature K is strictly positive and strictly negative.

Solution:

Consider S as a surface of revolution with the standard parametrization given by $\boldsymbol{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v))$ with functions f and g to be determined. That $\boldsymbol{x}(u, v)$ is an element of the surface $S=\{(x, y, z) \mid z=$ $\left.1 /\left(1+x^{2}+y^{2}\right)\right\}$ means that

$$
g(v)=\frac{1}{1+f(v)^{2}}
$$

Choose e.g. $f(v)=v$ then $g(v)=1 /\left(1+v^{2}\right)$. As a parameter domain U we choose $U_{1}=(-\pi, \pi) \times(0, \infty)$ and $U_{2}=(0,2 \pi) \times(0, \infty)$.
Note: This parametrization covers all points on S except the point $(0,0,1) \in S$.
Calculating the coefficients of the first and second fundamental forms, we obtain

$$
\begin{array}{lll}
E=f^{2}=v^{2}, & F=0, & G=f^{\prime 2}+g^{\prime 2}=1+\frac{4}{v}^{2}\left(1+v^{2}\right)^{2} \\
L=\frac{-f g^{\prime}}{\sqrt{f^{\prime 2}+g^{\prime 2}}}, & M=0, & N=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\sqrt{f^{\prime 2}+g^{\prime 2}}}
\end{array}
$$

(see Example 9.13). In our concrete case, we have

$$
f^{\prime}(v)=1, \quad f^{\prime \prime}(v)=0, \quad g^{\prime}(v)=\frac{-2 v}{\left(1+v^{2}\right)^{2}}, \quad g^{\prime \prime}(v)=\frac{-2\left(1+v^{2}\right)+2 v(2 v) 2}{\left(1+v^{2}\right)^{3}}=\frac{2\left(3 v^{2}-1\right)}{\left(1+v^{2}\right)^{3}}
$$

Since the parametrization is principal ($F=0$ and $M=0$), the principal curvatures are

$$
\kappa_{1}=\frac{L}{E}=\frac{-f g^{\prime}}{f^{2}\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{1 / 2}}=-\frac{g^{\prime}}{f\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{1 / 2}}, \quad \kappa_{2}=\frac{N}{G}=\frac{\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{3 / 2}}
$$

which means here that

$$
\kappa_{1}=\frac{2}{\left(1+v^{2}\right)^{2}\left(1+\frac{4 v^{2}}{\left(1+v^{2}\right)^{4}}\right)^{1 / 2}} \quad \text { and } \quad \kappa_{2}=-\frac{2\left(3 v^{2}-1\right)}{\left(1+v^{2}\right)^{3}\left(1+\frac{4 v^{2}}{\left(1+v^{2}\right)^{4}}\right)^{3 / 2}}
$$

Now, a point is umbilic if $\kappa_{1}=\kappa_{2}$ at this point, i.e., if

$$
1=-\frac{\left(3 v^{2}-1\right)}{\left(1+v^{2}\right)\left(1+\frac{4 v^{2}}{\left(1+v^{2}\right)^{4}}\right)}
$$

or, equivalently, $(v>0)$

$$
\begin{aligned}
0 & =\left(1+v^{2}\right)\left(1+\frac{4 v^{2}}{\left(1+v^{2}\right)^{4}}\right)+\left(3 v^{2}-1\right) \\
& =4 v^{2}+\frac{4 v^{2}}{\left(1+v^{2}\right)^{3}}
\end{aligned}
$$

which has no solution if $v \neq 0$. Therefore, the surface has no umbilic point on the points covered by the parametrization as surface of revolution, i.e., the points $p \in S \backslash\{(0,0,1)\}$ are not umbilic.

What about the point $(0,0,1)$?
If we are just at the point $(0,0,1)$ (with parameter values $(u, v)=(0,0)$ in the parametrization given by $\left.\boldsymbol{x}(u, v)=\left(u, v, 1 /\left(1+u^{2}+v^{2}\right)\right)\right)$, we obtain

$$
f(x, y)=\frac{1}{1+x^{2}+y^{2}}, \quad \quad f_{x}(x, y)=\frac{-2 x}{\left(1+x^{2}+y^{2}\right)^{2}}, \quad f_{y}(x, y)=\frac{-2 y}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

and

$$
f_{x x}(x, y)=\frac{-2\left(1+x^{2}+y^{2}\right)+2 x 2 x 2}{\left(1+x^{2}+y^{2}\right)^{3}}=\frac{-2\left(1-3 x^{2}+y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{3}}
$$

and similarly

$$
f_{x y}(x, y)=\frac{(-2)(-2 x)(2 y)}{\left(1+x^{2}+y^{2}\right)^{3}}=\frac{8 x y}{\left(1+x^{2}+y^{2}\right)^{3}}, \quad \quad f_{y y}(x, y)=\frac{-2\left(1+x^{2}-3 y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{3}}
$$

Hence, we obtain for the coefficients of the first and second fundamental form at $(0,0)$ the expressions

$$
E(0,0)=1+f_{x}(0,0)=1, \quad F(0,0)=f_{x}(0,0) f_{y}(0,0)=0, \quad G(0,0)=1+f_{y}(0,0)=1
$$

Denote $D=1+f_{x}^{2}(0,0)+f_{y}^{2}(0,0)=1$, then

$$
L(0,0)=\frac{f_{x x}(0,0)}{D}=-2, \quad M(0,0)=\frac{f_{x y}(0,0)}{D}=0, \quad N(0,0)=\frac{f_{y y}(0,0)}{D}=-2
$$

Therefore, the Gauss and mean curvatures at the parameter value $(0,0)$ are

$$
K=\frac{L N-M^{2}}{E G-F^{2}}=4, \quad H=\frac{E N-2 F M+G L}{2\left(E G-F^{2}\right)}=\frac{-2-2}{2}=-2
$$

so that the principal curvatures are the roots of

$$
\kappa^{2}-2 H \kappa+K=0, \quad \text { or } \quad \kappa^{2}+4+4=(\kappa+2)^{2}=0,
$$

i.e., $\kappa_{1}=\kappa_{2}=-2$.

Therefore, $(0,0,1)$ is the only umbilic point of the surface (as one might already guess from the rotational symmetry of the surface).
One could start with this parametrization (as a graph) right from the beginning, but it seems that the formulas for the two principal curvaturs become much more complicated than as for a surface of revolution.

3.4. (\star) The pseudosphere

The pseudosphere is the surface of revolution obtained by rotating the tractrix with parametrization $\boldsymbol{\alpha}(s)=(1 / \cosh s, 0, s-\tanh s)$ around the z-axis. Prove that the pseudosphere has constant Gauss curvature $K=-1$.

Solution:

Calculating the coefficients of the first and second fundamental forms, we obtain

$$
\begin{array}{lll}
E=f^{2}, & F=0, & G=f^{\prime 2}+g^{\prime 2} \\
L=\frac{-f g^{\prime}}{\sqrt{f^{\prime 2}+g^{\prime 2}}}, & M=0, & N=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\sqrt{f^{\prime 2}+g^{\prime 2}}}
\end{array}
$$

(see Example 9.13). Let us assume that $v>0$ (the surface for negative values v is just the mirror image w.r.t. the $x y$-plane).
In our case, we have

$$
f(v)=\frac{1}{\cosh v}, \quad \quad f^{\prime}(v)=-\frac{\sinh v}{\cosh ^{2} v}, \quad \quad f^{\prime \prime}(v)=-\frac{\cosh ^{2} v-2 \sinh ^{2} v}{\cosh ^{3} v}=\frac{\cosh ^{2} v-2}{\cosh ^{3} v}
$$

and

$$
g(v)=v-\tanh v, \quad g^{\prime}(v)=1-\frac{1}{\cosh ^{2} v}=\frac{\cosh ^{2} v-1}{\cosh ^{2} v}=\frac{\sinh ^{2} v}{\cosh ^{2} v}, \quad g^{\prime \prime}(v)=\frac{2 \sinh v}{\cosh ^{3} v}
$$

Moreover, we have

$$
f^{\prime}(v)^{2}+g^{\prime}(v)^{2}=\frac{\sinh ^{2} v+\sinh ^{4} v}{\cosh ^{4} v}=\frac{\sinh ^{2} v\left(1+\sinh ^{2} v\right)}{\cosh ^{4} v}=\frac{\sinh ^{2} v \cosh ^{2} v}{\cosh ^{4} v}=\frac{\sinh ^{2} v}{\cosh ^{2} v}=\tanh ^{2} v
$$

so that

$$
\begin{aligned}
& E=\frac{1}{\cosh ^{2} v}, \quad F=0, \quad G=\tanh ^{2} v \\
& L=\frac{-\tanh ^{2} v / \cosh v}{\tanh v}, \quad M=0, \quad N=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\sqrt{f^{\prime 2}+g^{\prime 2}}} \\
& =-\frac{\sinh v}{\cosh ^{2} v}, \quad=\frac{\left(\cosh ^{2} v-2\right) \tanh ^{2} v / \cosh ^{3} v+2 \sinh ^{2} v / \cosh ^{5} v}{\tanh v} \\
& =\frac{\sinh v}{\cosh ^{2} v}
\end{aligned}
$$

Since the parametrization is principal ($F=0$ and $M=0$), the principal curvatures are

$$
\begin{aligned}
\kappa_{1} & =\frac{L}{E}=-\frac{\sinh v}{\cosh ^{2} v \cosh ^{-2} v}=-\sinh v, \\
\kappa_{2} & =\frac{N}{G}=\frac{\sinh v}{\cosh ^{2} v \tanh ^{2} v}=\frac{1}{\sinh v},
\end{aligned}
$$

hence the Gauss curvature is $K=\kappa_{1} \kappa_{2}=-1$, as desired.

