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Differential Geometry III, Solutions 3 (Week 13)

Weingarten map, Gauss, mean and principal curvatures - 1

3.1. A local parametrization x of a surface S in R3 is called orthogonal provided F = 0 (so xu and xv are
orthogonal at each point). It is called principal if F = 0 and M = 0, where E,F,G (resp. L,M,N)
are the coefficients of the first (resp. second) fundamental form.

(a) Let x be an orthogonal parametrization. Show that, at any point p = x(u, v) on S,

−dNp(xu) =
L

E
xu +

M

G
xv, −dNp(xv) =

M

E
xu +

N

G
xv,

where N denotes the Gauss map.

(b) Assume now that the parametrization is principal. Show that κ1 = L/E and κ2 = N/G are the
principal curvatures. Calculate the Gauss and mean curvature in terms of E,G,L,N . Determine
the principal directions.

Solution:

(a) Since dpN maps TpS into TpS, we can express −dpN(xu) and −dpN(xv) as a linear combination of xu

and xv, i.e.,
−dpN(xu) = axu + bxv and − dpN(xv) = cxu + dxv.

Multiplying both equations with ·xu and ·xv gives (using the definitions of the coefficients of the first and
second fundamental forms and the equalities Nu · xu +N · xuu = 0 etc.)

L = aE + bF, M = aF + bG, M = cE + dF, N = cF + dG,

and, since F = 0,

a =
L

E
, b =

M

G
, c =

M

E
, d =

N

G
,

i.e., the desired equation.

(b) If M = 0, then the equations from the first part are

−dNp(xu) =
L

E
xu and − dNp(xv) =

N

G
xv.

Therefore, xu is an eigenvector with eigenvalue L/E, as well as xv with eigenvalue N/G. Hence the
principal, Gauss and mean curvatures are

κ1 =
L

E
, κ2 =

N

G
, K = κ1κ2 =

LN

EG
, H =

1

2
(κ1 + κ2) =

L

2E
+

N

2G
=
LG+NE

2EG
.

3.2. Calculation of the Weingarten map directly for surfaces of revolution

Let f : J −→ (0,∞) and g : J −→ R be smooth functions on some open interval J in R and let
α : J −→ R3 be a space curve given by α(v) = (f(v), 0, g(v)). Assume that this curve is parametrized
by arc length. Let S be the surface of revolution obtained by rotating α around the z-axis.

(a) Find suitable parametrizations x : Ui −→ S of S and determine parameter domains U1 and U2

covering the whole surface S. Calculate the normal vector N at x(u, v)



(b) Express a, b, c, d ∈ R in −dNp(xu) = axu + bxv and −dNp(xv) = cxu +dxv in terms of f and g.

(c) Calculate the principal directions and principal curvatures.

(d) Calculate the Gauss and mean curvatures.

(e) Compare your results with Example 9.13 from the lectures.

Solution: The generating curve is parametrized by arc length, so (f ′)2 + (g′)=1.

(a) The standard parametrization of a surface of revolution is given by

x(u, v) = (f(v) cosu, f(v) sinu, g(v)), (u, v) ∈ U

where U = U1 or U = U2 and (for example)

U1 = (−π, π)× J, U2 = (0, 2π)× J,

so that the first (angular) variable u covers all angles.

Make sure you understand why we need (at least) two parameter sets U1 and U2.

Moreover, (f , g have the argument v, and cos, sin have the argument u)

xu = (−f sin, f cos, 0), xv = (f ′ cos, f ′ sin, g′),

hence xu ×xv = (g′ cos, g′ sin,−f ′). Since the generating curve is parametrized by arc length, xu ×xv is
a unit vector, so

N = (g′ cos, g′ sin,−f ′).
Moreover,

E = xu · xu = f2, F = 0, G = (f ′)2 + (g′)2 = 1.

We also need (later on) the coefficients of the second fundamental form, so we calculate

xuu = (−f cos,−f sin, 0), xuv = (−f ′ sin, f ′ cos, 0), xvv = (f ′′ cos, f ′′ sin, g′′)

so that

L = xuu ·N = −fg′, M = xuv ·N = 0, N = xvv ·N = f ′′g′ − f ′g′′

(b) We multiply both equations with xu and xv, so that

L = −dpN(xu) · xu = aE + bF, M = −dpN(xu) · xv = aF + bG,

M = −dpN(xv) · xu = cE + dF, N = −dpN(xv) · xv = cF + dG,

where we used the equalities Nu · xu +N · xuu = 0 etc.

The above equations simplify to

L = aE, M = bG,

M = cE, N = dG.

If F = 0 , then

a =
L

E
, b =

M

G
, c =

M

E
, d =

N

G
.

If, in addition, M = 0, then

a =
L

E
, b = 0, c = 0, d =

N

G
.

(c) We have (using the above expressions for a, b, c and d)

−dpN(xu) =
L

E
xu and − dpN(xv) =

N

G
xv,

hence the basis vectors xu and xv are eigenvectors (principal directions) with eigenvalues (principal cur-
vatures)

κ1 =
L

E
=
−fg′

f2
= −g

′

f
and κ2 =

N

G
= f ′′g′ − f ′g′′



(d) The Gauss and mean curvature are

K = κ1κ2 =
g′(f ′g′′ − f ′′g′)

f
and H =

1

2
(κ1 + κ2) = − g

′

2f
+

1

2
(f ′′g′ − f ′g′′).

3.3. Let S be the surface in R3 defined by the equation

z =
1

1 + x2 + y2
.

Find the principal curvatures and the umbilic points (i.e., the points where the principal curvatures are
the same). Give a sketch of the surface showing the regions of the surface where the Gauss curvature
K is strictly positive and strictly negative.

Solution:

Consider S as a surface of revolution with the standard parametrization given by x(u, v) = (f(v) cosu, f(v) sinu, g(v))
with functions f and g to be determined. That x(u, v) is an element of the surface S = { (x, y, z) | z =
1/(1 + x2 + y2) } means that

g(v) =
1

1 + f(v)2
.

Choose e.g. f(v) = v then g(v) = 1/(1 + v2). As a parameter domain U we choose U1 = (−π, π)× (0,∞) and
U2 = (0, 2π)× (0,∞).

Note: This parametrization covers all points on S except the point (0, 0, 1) ∈ S.

Calculating the coefficients of the first and second fundamental forms, we obtain

E = f2 = v2, F = 0, G = f ′2 + g′2 = 1 +
4

v

2

(1 + v2)2

L =
−fg′√
f ′2 + g′2

, M = 0, N =
f ′′g′ − f ′g′′√
f ′2 + g′2

(see Example 9.13). In our concrete case, we have

f ′(v) = 1, f ′′(v) = 0, g′(v) =
−2v

(1 + v2)2
, g′′(v) =

−2(1 + v2) + 2v(2v)2

(1 + v2)3
=

2(3v2 − 1)

(1 + v2)3
.

Since the parametrization is principal (F = 0 and M = 0), the principal curvatures are

κ1 =
L

E
=

−fg′

f2((f ′)2 + (g′)2)1/2
= − g′

f((f ′)2 + (g′)2)1/2
, κ2 =

N

G
=

(f ′′g′ − f ′g′′)
((f ′)2 + (g′)2)3/2

,

which means here that

κ1 =
2

(1 + v2)2
(

1 + 4v2

(1+v2)4

)1/2 and κ2 = − 2(3v2 − 1)

(1 + v2)3
(

1 + 4v2

(1+v2)4

)3/2 .
Now, a point is umbilic if κ1 = κ2 at this point, i.e., if

1 = − (3v2 − 1)

(1 + v2)
(

1 + 4v2

(1+v2)4

) ,
or, equivalently, (v > 0)

0 = (1 + v2)
(

1 +
4v2

(1 + v2)4

)
+ (3v2 − 1)

= 4v2 +
4v2

(1 + v2)3

which has no solution if v 6= 0. Therefore, the surface has no umbilic point on the points covered by the
parametrization as surface of revolution, i.e., the points p ∈ S \ {(0, 0, 1)} are not umbilic.



What about the point (0, 0, 1)?

If we are just at the point (0, 0, 1) (with parameter values (u, v) = (0, 0) in the parametrization given by
x(u, v) = (u, v, 1/(1 + u2 + v2))), we obtain

f(x, y) =
1

1 + x2 + y2
, fx(x, y) =

−2x

(1 + x2 + y2)2
, fy(x, y) =

−2y

(1 + x2 + y2)2
,

and

fxx(x, y) =
−2(1 + x2 + y2) + 2x2x2

(1 + x2 + y2)3
=
−2(1− 3x2 + y2)

(1 + x2 + y2)3

and similarly

fxy(x, y) =
(−2)(−2x)(2y)

(1 + x2 + y2)3
=

8xy

(1 + x2 + y2)3
, fyy(x, y) =

−2(1 + x2 − 3y2)

(1 + x2 + y2)3
.

Hence, we obtain for the coefficients of the first and second fundamental form at (0, 0) the expressions

E(0, 0) = 1 + fx(0, 0) = 1, F (0, 0) = fx(0, 0)fy(0, 0) = 0, G(0, 0) = 1 + fy(0, 0) = 1.

Denote D = 1 + f2x(0, 0) + f2y (0, 0) = 1, then

L(0, 0) =
fxx(0, 0)

D
= −2, M(0, 0) =

fxy(0, 0)

D
= 0, N(0, 0) =

fyy(0, 0)

D
= −2.

Therefore, the Gauss and mean curvatures at the parameter value (0, 0) are

K =
LN −M2

EG− F 2
= 4, H =

EN − 2FM +GL

2(EG− F 2)
=
−2− 2

2
= −2,

so that the principal curvatures are the roots of

κ2 − 2Hκ+K = 0, or κ2 + 4 + 4 = (κ+ 2)2 = 0,

i.e., κ1 = κ2 = −2.

Therefore, (0, 0, 1) is the only umbilic point of the surface (as one might already guess from the rotational
symmetry of the surface).

One could start with this parametrization (as a graph) right from the beginning, but it seems that the formulas
for the two principal curvaturs become much more complicated than as for a surface of revolution.

3.4. (?) The pseudosphere

The pseudosphere is the surface of revolution obtained by rotating the tractrix with parametrization
α(s) = (1/ cosh s, 0, s − tanh s) around the z-axis. Prove that the pseudosphere has constant Gauss
curvature K = −1.

Solution:

Calculating the coefficients of the first and second fundamental forms, we obtain

E = f2, F = 0, G = f ′2 + g′2

L =
−fg′√
f ′2 + g′2

, M = 0, N =
f ′′g′ − f ′g′′√
f ′2 + g′2

(see Example 9.13). Let us assume that v > 0 (the surface for negative values v is just the mirror image w.r.t.
the xy-plane).

In our case, we have

f(v) =
1

cosh v
, f ′(v) = − sinh v

cosh2 v
, f ′′(v) = −cosh2 v − 2 sinh2 v

cosh3 v
=

cosh2 v − 2

cosh3 v
,



and

g(v) = v − tanh v, g′(v) = 1− 1

cosh2 v
=

cosh2 v − 1

cosh2 v
=

sinh2 v

cosh2 v
, g′′(v) =

2 sinh v

cosh3 v

Moreover, we have

f ′(v)2 + g′(v)2 =
sinh2 v + sinh4 v

cosh4 v
=

sinh2 v(1 + sinh2 v)

cosh4 v
=

sinh2 v cosh2 v

cosh4 v
=

sinh2 v

cosh2 v
= tanh2 v

so that

E =
1

cosh2 v
, F = 0, G = tanh2 v

L =
− tanh2 v/ cosh v

tanh v
, M = 0, N =

f ′′g′ − f ′g′′√
f ′2 + g′2

= − sinh v

cosh2 v
, =

(cosh2 v − 2) tanh2 v/ cosh3 v + 2 sinh2 v/ cosh5 v

tanh v

=
sinh v

cosh2 v

Since the parametrization is principal (F = 0 and M = 0), the principal curvatures are

κ1 =
L

E
= − sinh v

cosh2 v cosh−2 v
= − sinh v,

κ2 =
N

G
=

sinh v

cosh2 v tanh2 v
=

1

sinh v
,

hence the Gauss curvature is K = κ1κ2 = −1, as desired.


