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Differential Geometry III, Solutions 4 (Week 14)

Weingarten map, Gauss, mean and principal curvatures - 2

4.1. Let S be the surface given by the graph of the function f: U — R (U C R? open). Calculate the
Gauss and mean curvature of S in terms of f and its derivatives.

Solution: We choose the standard parametrization for a graph of a function, i.e.,
z:U— S, z(u,v) = (u,v, f(u,v)),
where S = { (u, v, f(u,v))]| (u,v) € U}. Then we have

Ly = (1707f:v)a LTy = (0717fy)7 Ty X Ty = (_fw7_fy7 1)7
Lyu = (anvfl’m)7 Ly = (Ovovfxy)» Lyy = (anafyy)

From this, we see that the normal vector is

1
N==5, D=\1+/2+f;

and we easily see that

E:$u$u21+fz27 F::Bu'wv:fa:fyv G:wv'wv:1+fy2a
_ _ Jaa _ _ Sy _ Sy
L—.’BuuN—j, M—.’BUU~N—3, N—va'N—f.

Note that we have

BG-F? =1+ )0+ f) = fafy =1+ f7 + f] = |z x 2| = D*.
(observe that the equality EG — F? = ||z, X z,||? is always true, what is the geometrical meaning of this?)
Now, the Gauss curvature is given by

_ LN -M? _ feafyy — f2, _ det H(f)

K= -
EG — F? D4 D4

,  where H(f):@zm ?y)

is the Hessian matrix of f. Moreover, the mean curvature is given by

_ BN —2FM +GL _ (L4 ) fyy = 2 fyfay + (7 + D fow

H
EG — F? D3

4.2. (x) Enneper’s surface
Consider the surface in R? parametrized by

u? v3
x(u,v) = <u—§+uv2,v—§+u20,u2—v2>, (u,v) € R%,

Show that

(a) the coefficients of the first and second fundamental forms are given by

E(u,v) = G(u,v) = (1 +u® +v*)? F(u,v) =0 and L=2 M=0, N=-2



(b) the principal curvatures at p = x(u,v) are given by

2 2

S e et il

Solution:

(a) We have
@y (u,v) = (1 —u? + 0%, 2uw, 2u), xy(u,v) = (2uv, 1 +u? — 0%, —2v)
so that the coeflicients of the first fundamental form are

B(u,v) = (1 —u? 4+ v?)? + 4uv® 4 4u? = (1 4+ u* + v?)?,
F(u,v) = 2uv(l — u? + %) + 2uv(1 + u? — v?) — duv = 0
G(u,v) = 4u*v? + (1 +u? —v?)? + 4v? = (1 +u? + v?)?

as desired. Moreover, we have

Ty (u,v) = (—2u, 2v, 2), Ty (u,v) = (20, 2u, 0), Ty (u,v) = (2u, —2v, —2)
and
1—u? +0? 1+u? -2
Ty (u,v) X Ty(u,v) = 2uv X 2uv
2u 2v
—2u(1 + u? + v?) —2u
= 20(1 + u? +v?) = (1+u?+0?) 2v
(1 —u? —v?)(1+u? +0?) 1—u?—?

and ||z, X z,||*> = EG — F? = (1 + u? + v?)*, so that the normal vector is

1 —2u
Nt =rrare |, %
—u"—v

In particular, the coefficients of the second fundamental form are

A 4 40?4 2(1 — u? —0?)

L(’U,,’U) = Tyu * N(x(uvv)) 1+ u2 + ’U2 =2
—4uv + duv
M = Lyv * N ) =T .2 .2
(u,0) =z (@(u,v)) 1+ u?+ 02
—4u? — 4v? — 2(1 — u? —0?
N(u,v) = @y - N(2(u,v)) = 1+u21v2 ):_2
again as desired.
(b) Let us first find the Gauss and mean curvature:
LN — M? —4
K — — d
EG_F2 (1+’LL2 +’U2)4 an
g EN-2FM+GL _ (-24+2)(1 +u’ +0%)? _

EG — F? B (1+u2+v2)4
hence the principal curvatures are the solutions of k? — 2Hk + K = 0, i.e., of

4 2
2
= - p— :t—
T arweroeyr M TR e e
as desired.

Remark. Note that the mean curvature of the Enneper surface S vanishes, so it is a minimal surface.



4.3. If S is a surface in R? then a parallel surface to S is a surface S given by a local parametrization of
the form

y(u,v) = z(u,v) + alN (u,v), (u,v) € U,

where : U — S is a local parametrization of S, N : U — S? the Gauss map in that parametrization,
and a is some given constant.

(a)

(b)

()

Show that
Yu X Yp = (1 — 2Ha + Ka?) 2, X Ty,

where H and K are the mean and Gauss curvatures of S.
Assuming that 1 — 2Ha + Ka? is never zero on S, show that the Gauss curvature K and mean
curvature H of S are given by
K ~ H-K
i a

K = - .
1—2Ha+ Ka?’ 1—2Ha + Ka?

If S has constant mean curvature H = ¢ # 0 and the Gauss curvature K is nowhere vanishing,
show that the parallel surface given by a = 1/(2¢) has constant Gauss curvature 4c?.

Solution:

(a)

First, note that
Y, =Ty +alNy, and Y, = Ty + alN .

In order to express y, X vy, in the desired form, it is helpful to express the derivative with respect to the
basis {@,,x,}:

-N,=—-(Noz), =—d,N(z,) = Az, + Bz, and

-N,=—-(Noxz), =—d,N(z,) = Cz, + Dz,

This is useful as we can express easily the Gauss and mean curvatures as the determinant and trace in
terms of these coefficients as

A+D

K =AD - BC and H = 5

Now,

Y, =%y +aN, =z, +a(Nox), =(1-aA)x, —aBx, and
Y, =&, +alN, =z, +a(Nox), =—-aCzx, + (1 —aD)x,

and therefore

Y. Xy, = ((1 —ad)x, — aBzx,) X (—aCwx, + (1 — aD)x,)
= ((1 —aA)(1—-aD)— a2BC):cu X Ty
= (1—a(A+ D)+ a*(AD — BC))z, X z,
=(1—-2Ha+ Ka*) x, X x,
=P
using the antisymmetry of the vector product (v X w = —w X v and v X v = 0), and we obtain the desired

formula.
If P:=1-2Ha+ Ka® # 0, then y,, X y, is not vanishing, the normal vectors of S and S fulfil
No y=Noz,

as y,, X y, and x,, X x, point in the same direction by the first part and the condition on 1 —2Ha + Ka?.

Remark. Be careful with the statement N = N , as the parametrisation is lost in this espression. This
becomes important when taking derivatives (see below).



Let us use the same trick as for the surface S also for S:

7Nu = 7(,]6 oY)y = —dpﬁ(yu) = ﬁyu + Eyv and

~N,=—(Noy), =-d,N(y,) = Cy, + Dy,.
Similarly as above, we have L
o e~ ~ A+ D
K=AD-BC and H="1%

Taking the derivative of the equation No y = IN o x and combining the previous results gives
Az, + Bx,=—-(Nox), = ,(N oY)y
= Ay, + By,
= /Nl((l — aA)z, — aBx,) + E(faC’mu + (1 —aD)z,)
= (;1(1 —ad) — éaC)wu + (—ZlaB +B(1- aD))x,.

Comparing the coefficients gives the linear system

1—-aA —aC \ [A) (A4
—aB 1-aD)\BJ]  \B
for (A, B). The determinant of the coefficient matrix is

(1—aA)(1 —aD)—a*BC =1— (A+ D)a+ (AD — BC)a* =1—2Ha+ Ka* = P # 0,
so that we can take the inverse and obtain
(g) 1 <1 —aD  aC > (A) 1 ((1—aD)A+aCB) 1 (A—aK)
Bl P\ aB 1-aA)\B) P\aBA+(1-aA)B) P B '
Similarly, we have (taking the derivative w.r.t. v) that
Cxy+ Dzy = —(Nox), = —(Noy),
y. + Dy,

(1-ad)x, — aBz,) + E(—aC’:cu + (1 —aD)z,)
= (5(1 —ad) — ﬁaC)mu + (—5’@3 +D(1— aD))x,.

C
C

Comparing the coefficients gives the linear system

(it =) (5)- ()

for (E, 15), and as above, we obtain

C\_1(1-aD aC \(C\_1(1-aD)C+aCD\_1( C

D] P\ aB 1-aA)\D) P\aBC+(1-aA)D) P \D—-aK)"
Now, we have

~ 1~ =~ 1 1 H—aK

and
~ e~~~ 1
K =AD - BC = ﬁ((A—aK)(D—aK)—BC)

1
= 53 (AD - BC —a(A+ D)K + a’K)
=K
K(1—2aH + a*K) K

T (1-2aH +a2K)?  1-2aH + 2K

as claimed.



(c) If S has constant mean curvature H = ¢ # 0 and K # 0, then

N K K 12K
K € 4R

T 1-2aH + 2K 1—2¢/2c+ K/4c2 K

(and we have P =1 —2aH + a’K = K/4c®? # 0 as K #0).
4.4. Let f be a smooth real-valued function defined on a connected open subset U of R2.

(a) Show that the graph S of f is a minimal surface in R3 (i.e., its mean curvature H vanishes) if
and only if

Fuy(L+ £2) = 2fafyfoy + faa(1 + f) = 0.
(b) Deduce that if f(x,y) = g(z) then S is minimal if and only if S is a plane with normal vector
parallel to the (x, z)-plane but not parallel to the z-axis.

(c) If f(z,y) = g(x) + h(y), find the most general form of f in order for S to be minimal.
Hint: Use separation of variables

Solution:

(a) Let us take the formulae for the mean curvature of a surface which is a graph of a function from Exercise
4.1 (feel free to repeat the calculations, it is a good exercise). We have

g EN—2FM +GL _ (14 [ fyy = 2fafyey + (f§ + Do
~ EG-F? B D3

where D = (1 + f2 + fy2)1/2. In particular, a surface is a minimal surface iff

(1 + fz)fyy - 2fmfyfzy + (fy2 + 1)fzm =0,
as desired.

(b) If f(z,y) = g(x), then f, = ¢, f, = 0, and the equation H = 0 becomes just ¢’ = 0 (only the third
summand is non-zero). In particular, g(x) = ax + b for some constants a,b € R, i.e., f is the graph of
a plane, and the normal vector of this plane is proportional to (—a,0, 1), i.e., parallel to the (z, z)-plane,
but not to the z-axis (as the z-component is never 0).

(c¢) If f(z,y) = g(z) + h(y), we obtain
fe=4, fy =", fex =9", fay =0, foy =h",
so that the equation H = 0 becomes

) ) q’ B
1 12\ 1 (1! Ve = ie. - _
(L gD W2+ )" =0, e =t

(separation of variables). Now, since the LHS depends on « only, while the RHS depends on y only, we

have
1

7‘9 =
g% +1

for some constant cg. Integrating gives (substituting s = ¢’(z), i.e., ds = ¢"(x) dz)

Co

1

/ Y ds=cox +c1, ie arctang’(z)=cor+c1 or ¢'(z)=tan(cor + c1).
s

Integrating gives g(x) = log | cos(coz + ¢1)|/co + ca.

Similarly, h(y) = —log | cos(—coy + ¢3)|/co + c4. So the most general form of f is

1 1
f(z,y) = . log | cos(cox + ¢1)| — . log | cos(—coy + ¢3)|/co + ¢5
0 0

_ 1 log cos(cox + ¢1)

+c
co cos(—coy + ¢3) >

where cq, ¢, c3, c5 are constants.



