Differential Geometry III, Homework 6 (Week 16)

Due date for starred problems: Thursday, March 2.

Curves on surfaces

6.1. Let $\{e_1, e_2\}$ be an orthonormal basis of T_pS consisting of eigenvectors of the Weingarten map $-d_pN$ with corresponding eigenvalues κ_1 , κ_2 . If $e = (\cos \vartheta)e_1 + (\sin \vartheta)e_2$, show, that the normal curvature κ_n of a curve tangential to e is given by

$$\kappa_{\rm n}(\vartheta) = \kappa_1 \cos^2 \vartheta + \kappa_2 \sin^2 \vartheta.$$

Deduce that

$$\frac{1}{2\pi} \int_0^{2\pi} \kappa_{\mathbf{n}}(\vartheta) \, \mathrm{d}\vartheta = H,$$

where H denotes the mean curvature of S at p. (This justifies the term *mean curvature*).

6.2. Let α be the curve defined by

$$\boldsymbol{\alpha}(t) = \varepsilon^t(\cos t, \sin t, 1) \quad \text{for } t \in \mathbb{R}.$$

Observe that α lies on the circular cone $S = \{ (x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = z^2 \}.$

Show that the normal curvature of $\boldsymbol{\alpha}$ in S is inversely proportional to ε^t .

- **6.3.** Show that an asymptotic curve can only exist in the hyperbolic or flat region $\{p \in S \mid K(p) \le 0\}$. (In other words, if a surface is elliptic everywhere, then there is no asymptotic curve.)
- **6.4.** Let S be a surface in \mathbb{R}^3 with Gauss map N, and let β be a regular curve on S not necessarily parametrized by arc length. Show that the geodesic curvature κ_g of β is given by

$$\kappa_{\mathrm{g}} = rac{1}{\|oldsymbol{eta}'\|^3} (oldsymbol{eta}' imes oldsymbol{eta}'') \cdot oldsymbol{N}$$

6.5. Let S be Enneper's surface (see Problem 4.2) parametrized by

$$\boldsymbol{x}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + u^2v, u^2 - v^2\right), \qquad (u,v) \in \mathbb{R}^2.$$

- (a) Calculate the lines of curvature.
- (b) Show that the asymptotic curves are given by $u \pm v = \text{const.}$

6.6. (a) (\star) Show that the asymptotic curves on the surface given by $x^2 + y^2 - z^2 = 1$ are straight lines.

(b) Let S be a ruled surface. What are necessary and sufficient assumptions on S for all asymptotic curves being straight lines?

Hint: use linear algebra.