Pavel Tumarkin

Differential Geometry III, Homework 7 (Week 17)

Due date for starred problems: Thursday, March 16.

Curves on surfaces. Geodesics.

7.1. If \boldsymbol{x} is a local parametrization of a surface S in \mathbb{R}^{3} with $E=1, F=0$ and G is a function of u only, write down the equations for $s \mapsto \boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ to be a geodesic. Conclude that the coordinate curves, where v is constant, are geodesics.
7.2. Let $\boldsymbol{x}: U \longrightarrow S$ be a parametrisation of a surface S, and let $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ be a curve parametrised by arclength. Find an expression for the geodesic curvature κ_{g} of $\boldsymbol{\alpha}$ involving $u^{\prime}, v^{\prime}, u^{\prime \prime}, v^{\prime \prime}, E, F, G, \Gamma_{j k}^{i}$ (i.e. the geodesic curvature is intrinsic, κ_{g} depends only on the curve and the first fundamental form of the surface).
7.3. Show that a curve of constant geodesic curvature c on the unit sphere $S^{2}(1)$ in \mathbb{R}^{3} is a planar circle of length $2 \pi\left(1+c^{2}\right)^{-1 / 2}$.
Hint: If $\boldsymbol{\alpha}$ is a curve of constant geodesic curvature c show that the vector $\boldsymbol{e}(s)=$ $\boldsymbol{\alpha}(s) \times \boldsymbol{\alpha}^{\prime}(s)+c \boldsymbol{\alpha}(s)$ does not depend on s, where $(\cdot)^{\prime}$ denotes differentiation with respect to arc length).
7.4. (\star) Let S be a surface in \mathbb{R}^{3} and suppose that Π is a plane which intersects S orthogonally along a regular curve $\boldsymbol{\gamma}$. If $\boldsymbol{\alpha}(s)$ is a parametrization of $\boldsymbol{\gamma}$ such that $\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|$ is constant, show that $\boldsymbol{\alpha}$ is a geodesic of S.
7.5. (a) Show that any constant speed curve on a surface S in \mathbb{R}^{3} which is a curve of intersection of S with a plane of reflectional symmetry of S is a geodesic.
(b) Show that the curves of intersection of the coordinate planes in \mathbb{R}^{3} with the surface S defined by the equation $x^{4}+y^{6}+z^{8}=1$ are geodesics.
7.6. Let $\boldsymbol{\alpha}$ be a regular curve on a surface S in \mathbb{R}^{3}.
(a) If $\boldsymbol{\alpha}$ is both a line of curvature and a geodesic, show that $\boldsymbol{\alpha}$ is a planar curve. Hint: Show that $\boldsymbol{N} \times \boldsymbol{\alpha}^{\prime}$ is constant along $\boldsymbol{\alpha}$).
(b) If $\boldsymbol{\alpha}$ is both a geodesic and a planar curve with nowhere vanishing curvature show that $\boldsymbol{\alpha}$ is a line of curvature.

