Differential Geometry III, Homework 7 (Week 17)

Due date for starred problems: Thursday, March 16.

Curves on surfaces. Geodesics.

- **7.1.** If \boldsymbol{x} is a local parametrization of a surface S in \mathbb{R}^3 with E = 1, F = 0 and G is a function of u only, write down the equations for $s \mapsto \boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s))$ to be a geodesic. Conclude that the coordinate curves, where v is constant, are geodesics.
- **7.2.** Let $\boldsymbol{x}: U \longrightarrow S$ be a parametrisation of a surface S, and let $\boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s))$ be a curve parametrised by arclength. Find an expression for the geodesic curvature κ_{g} of $\boldsymbol{\alpha}$ involving $u', v', u'', v'', E, F, G, \Gamma^{i}_{jk}$ (i.e. the *geodesic curvature is intrinsic*, κ_{g} depends only on the curve and the first fundamental form of the surface).
- **7.3.** Show that a curve of constant geodesic curvature c on the unit sphere $S^2(1)$ in \mathbb{R}^3 is a planar circle of length $2\pi(1+c^2)^{-1/2}$.

Hint: If $\boldsymbol{\alpha}$ is a curve of constant geodesic curvature c show that the vector $\boldsymbol{e}(s) = \boldsymbol{\alpha}(s) \times \boldsymbol{\alpha}'(s) + c\boldsymbol{\alpha}(s)$ does not depend on s, where $(\cdot)'$ denotes differentiation with respect to arc length).

- **7.4.** (*) Let S be a surface in \mathbb{R}^3 and suppose that Π is a plane which intersects S orthogonally along a regular curve γ . If $\alpha(s)$ is a parametrization of γ such that $\|\alpha'(t)\|$ is constant, show that α is a geodesic of S.
- **7.5.** (a) Show that any constant speed curve on a surface S in \mathbb{R}^3 which is a curve of intersection of S with a plane of reflectional symmetry of S is a geodesic.
 - (b) Show that the curves of intersection of the coordinate planes in \mathbb{R}^3 with the surface S defined by the equation $x^4 + y^6 + z^8 = 1$ are geodesics.
- **7.6.** Let $\boldsymbol{\alpha}$ be a regular curve on a surface S in \mathbb{R}^3 .
 - (a) If $\boldsymbol{\alpha}$ is both a line of curvature and a geodesic, show that $\boldsymbol{\alpha}$ is a planar curve. *Hint:* Show that $N \times \boldsymbol{\alpha}'$ is constant along $\boldsymbol{\alpha}$).
 - (b) If α is both a geodesic and a planar curve with nowhere vanishing curvature show that α is a line of curvature.