Differential Geometry III, Homework 9 (Week 19)

Gauss-Bonnet Theorem

9.1. Show that the catenoid $x^{2}+y^{2}=\cosh ^{2} z$ has a unique closed geodesic.
9.2. Find the Gauss curvature K at all points of the surface given by $x^{2}+y^{2}=z$. Evaluate $\int_{R} K \mathrm{~d} A$, where R is the region of the surface from $z=0$ to $z=a^{2}$ $(a \in \mathbb{R})$.
9.3. Verify the Gauss-Bonnet Theorem directly for the region R in the previous question.
9.4. Let S be a connected compact orientable surface in \mathbb{R}^{3} which is not homeomorphic to a sphere. Prove that S contains elliptic points, hyperbolic points and flat points.
9.5. Let S be a minimal surface homeomorphic to a plane. Show that two geodesics have at most one point of intersection.

Further problem

9.6. Let S be a surface of revolution with local parametrization

$$
\mathbf{x}(u, v)=(f(v) \cos (u), f(v) \sin (u), v)
$$

where $f(v)$ is a positive function of v. Suppose that S is minimal.
(a) Show that f satisfies:

$$
\frac{f^{\prime \prime}(v)}{1+\left(f^{\prime}(v)\right)^{2}}=\frac{1}{f(v)} .
$$

(b) Multiplying both sides of this equation by $2 f^{\prime}(v)$ and integrating, show that for some k :

$$
1+\left(f^{\prime}(v)\right)^{2}=k^{2} f(v)^{2}
$$

(c) Rearranging and integrating, show that for some c

$$
f(v)=\frac{1}{k} \cosh (k v+c) .
$$

The conclusion is that S is (part of) a catenary.

