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Differential Geometry III, Solutions 2 (Week 2)

2.1. The catenary is the plane curve α : R → R2 given by α(u) = (u, coshu). It is the curve assumed
by a uniform chain hanging under the action of gravity. Sketch the curve. Find its curvature.

Solution:

Since α(u) = (u, coshu), we can write
α′(u) = (1, sinhu),

so that
‖α′(u)‖ =

√
1 + sinh2 u = coshu

and
α′′(u) = (0, coshu)

Now,

κ(u) =
x′(u)y′′(u)− x′′(u)y′(u)

‖α′(u)‖3
=

coshu

cosh3 u
=

1

cosh2 u

2.2. Suppose that α : I → R2 is a regular curve, but not necessarily unit speed. Write α(u) =
(x(u), y(u)). Find the formula for the curvature κ(u) at the parameter value u in terms of the
functions x and y (and their derivatives) at u.

Solution:

We can write the unit tangent vector as

t(u) =
α′(u)

‖α′(u)‖
=

1

‖α′(u)‖
(x′(u), y′(u)),

so the unit normal vector can be written as

n(u) =
1

‖α′(u)‖
(−y′(u), x′(u))

To compute the curvature κ(u) we need to compute the vector t′(s)|u, where s is an arc length parameter
and s = l(u) for l to be the lenght function. By the chain rule, we have

t′(s)|u =
dt

du

du

ds
,

where
du

ds
= (l−1)′(s) =

1

l′(u)
=

1

‖α′(u)‖
.

Thus,

t′(s)|u =
1

‖α′(u)‖
d

du

(
(x′(u), y′(u))

‖α′(u)‖

)
=

1

‖α′(u)‖
d

du

(
(x′(u), y′(u))

(x′(u)2 + y′(u)2)1/2

)
=
x′(u)y′′(u)− x′′(u)y′(u)

(x′(u)2 + y′(u)2)2
(−y′(u),x′(u))

(some work is required to obtain the last equality above...)

Therefore,

κ(u) = n(u) · t′(s)|u =
1

‖α′(u)‖
x′(u)y′′(u))− x′′(u)y′(u)

(x′(u)2 + y′(u)2)2
‖(−y′(u), x′(u))‖2 =

x′(u)y′′(u)− x′′(u)y′(u)

(x′(u)2 + y′(u)2)3/2



2.3. (?) Compute the curvature of tractrix (see Exercise 1.6) at α(u).

Solution:

Using the formula above and the expressions for α′(u) and α′′(u)

α′(u) = (cosu,− sinu+
1

sinu
) and α′′(u) = (− sinu,− cosu− cosu

sin2 u
)

we compute

κ(u) =
cosu(− cosu− cosu

sin2 u
)− (− sinu)(− sinu+ 1

sinu )

(cos2 u+ (− sinu+ 1
sinu )2)3/2

=
− cos2 u(1 + 1

sin2 u
)− (sin2 u− 1)

(cos2 u+ sin2 u− 2 + 1
sin2 u

)3/2
=

=
− cos2 u− cos2 u

sin2 u
− (− cos2 u)

( 1
sin2 u

− 1)3/2
=
− cos2 u

sin2 u

( cos2 u
sin2 u

)3/2
= −| tanu|

2.4. Let α : I → R2 be a smooth regular plane curve.

(a) Assume that for some u0 ∈ I the normal line to α at α(u0) passes through the origin. Show
that for some ε > 0 the trace α(u0 − ε, u0 + ε) can be written in polar coordinates as

β(ϑ) = (ρ(ϑ) cosϑ, ρ(ϑ) sinϑ)

for an appropriate smooth function ρ(ϑ), where ϑ ∈ J for some interval J .

(b) Assume that all normal lines to α pass through the origin. Show that the trace of α is contained
in a circle.

(c) Let α : I → R2 be given in polar coordinates by

α(ϑ) = (ρ(ϑ) cosϑ, ρ(ϑ) sinϑ), ϑ ∈ [a, b]

Show that the length of α is ∫ b

a

√
ρ2 + (ρ′)2 dϑ

(d) In the assumptions of (c), show that the curvature of α is

κ(ϑ) =
2(ρ′)2 − ρρ′′ + ρ2

[ρ2 + (ρ′)2]3/2

Solution:

(a) Since the normal line at α(u0) passes through the origin, the tangent vector α′(u0) is orthogonal to
the vector α(u0). Write α(u) = (x(u), y(u)), and without loss of generality assume that x′(u0) 6= 0 (oth-
erwise rotate the whole picture around the origin by a small angle). By the latter assumption, we have
y′(u0)/x′(u0) 6= ∞ (geometrically, y′(u0)/x′(u0) is the tangent of the angle ϕ(u0) forming by the tangent
vector α′(u0) and the x-axis).

By smoothness of α, we can choose a small ε such that for every u ∈ (u0 − ε, u0 + ε) the angle ϕ(u) forming
by the tangent vector α′(u) and the x-axis differs from ϕ(u0) not too much (say, by π/100 at most). This
implies that for any u ∈ (u0−ε, u0+ε) the line passing through the origin and α(u) intersects α(u0−ε, u0+ε)
at α(u) only.

Now, taking ϑ = π − ϕ(u) and ρ(ϑ) = ‖α(u)‖ (draw the picture!!!) we obtain the required parametrization.

(b) Take any u0 ∈ I and, as in (a), parametrize α in some neighborhood of α(u0) by

β(ϑ) = α(u(ϑ)) = (ρ(ϑ) cosϑ, ρ(ϑ) sinϑ)

Now
β′(ϑ) = (ρ′(ϑ) cosϑ− ρ(ϑ) sinϑ, ρ′(ϑ) sinϑ+ ρ(ϑ) cosϑ)



By assumptions, β′(ϑ) is orthogonal to β(ϑ), so

0 = β′(ϑ) · β(ϑ) = (ρ′(ϑ) cosϑ− ρ(ϑ) sinϑ)ρ(ϑ) cosϑ+ (ρ′(ϑ) sinϑ+ ρ(ϑ) cosϑ)ρ(ϑ) sinϑ = ρ′ρ,

which implies that ρ′ ≡ 0. Therefore, ρ(ϑ) = r is constant in some neighborhood of every u ∈ I, so it is
constant on I (prove this implication!). Thus, the trace of β (which coincides with the trace of α) is contained
in a circle of radius r centered at the origin.

(c) By definition,

l(α) =

∫ b

a

‖α′(ϑ)‖ dϑ =

∫ b

a

√
(ρ′(ϑ) cosϑ− ρ(ϑ) sinϑ)2 + (ρ′(ϑ) sinϑ+ ρ(ϑ) cosϑ2) dϑ =

=

∫ b

a

√
ρ′(ϑ)2(cos2 ϑ+ sin2 ϑ) + ρ′(ϑ)ρ(ϑ)(−2 cosϑ sinϑ+ 2 cosϑ sinϑ) + ρ(ϑ)2(sin2 ϑ+ cos2 ϑ) dϑ =

=

∫ b

a

√
ρ2 + (ρ′)2 dϑ

(d) Apply the formula for the curvature from Exercise 2.2 and the expression for α′(ϑ) from (c).

2.5. Find an arc length parameter for the graphs of the following functions f, g : (0,∞)→ R:

(a) f(x) = ax+ b, a, b ∈ R;

(b)(?) g(x) = 8
27x

3/2.

Solution:

Parametrize the curves by α(x) = (x, f(x)) and β(x) = (x, g(x)), and choose x0 = 0.

(a) By definition,

s = l(x) =

∫ x

0

‖α′(u)‖ du =

∫ x

0

‖(1, f ′(u))‖ du =

∫ x

0

√
1 + a2 du = x

√
1 + a2

Thus,

x =
s√

1 + a2
,

and the curve
α̃(s) = (

s√
1 + a2

,
as√

1 + a2
+ b)

is an arc length parametrization of the graph of f(x).

(b) Similar to (a), we write

s = l(x) =

∫ x

0

‖β′(u)‖ du =

∫ x

0

‖(1, 4

9

√
u)‖ du =

∫ x

0

√
1 +

16

81
u du =

81

16

2

3
(1+

16

81
u)3/2|x0 =

27

8
((1+

16

81
x)3/2−1),

which implies

x =
81

16

(
(

8

27
s+ 1)2/3 − 1

)


