Durham University Michaelmas 2016
Pavel Tumarkin

Differential Geometry III, Solutions 3 (Week 3)

Evolute and involute

3.1. Let « denote the catenary from Exercise 2.1. Show that

(a) the involute of a starting from (0,1) is the tractrix from Exercise 1.6 (with z- and y-axes
exchanged and different parametrization);

(b) the evolute of « is the curve given by

B(u) = (u — sinh u cosh u, 2 cosh )
(c¢) Find the singular points of 3 and give a sketch of its trace.

Solution:

(a) The involute of a has parametrization

(1) = a(u) — C(u)t(w)

Since
a'(u) = (1,sinhu),

we have

u u
L(u) = /o & (v)||dv = /0 coshvdv = sinhu and t(u) = m(l,sinhu),

o ,

inh inh 1
v(u) = a(u) — sinhut(u) = (u — %,coshu — Scl(r)lsh:> = Coshu(ucoshu —sinhu, 1)

Exchanging coordinate axes, we obtain a curve parametrized by

~ 1
Y(u) = Coshu(l’ wcoshu — sinh u)

The tractrix from Exercise 1.6 is completely characterized by its property (d). Computing the corresponding
distance for the curve 4(u) we see that its trace is also a tractrix.

(b) As we have already computed in Exercise 2.1 and in (a),

t(u) = coshu(l’smh u), K(u) = @
In particular, k(u) is never zero, and
1 .
u) = coshu(i sinhu, 1)
Now we can compute the evolute:
e(u) = a(u) + ﬁn(u) = (u — sinh u cosh u, 2 cosh u)

as required.

(¢) The singular points of e correspond to the vertices of a«. We have
() ( 1 >/ 2sinhu
Ku)=|— | =——5—,

cosh? u cosh® u

so /(u) = 0 if and only if u = 0. The only singular point of e is (0, 2).



3.2.

3.3.

3.4.

(%) Parallels. Let o be a plane curve parametrized by arc length, and let d be a real number. The
curve B(u) = a(u) + dn(u) is called the parallel to o at distance d.

(a) Show that B is a regular curve except for values of u for which d = 1/k(u), where k is the
curvature of o

(b) Show that the set of singular points of all the parallels (i.e., for all d € R) is the evolute of a.

Solution:

(a) Assume k(u) = 0 or dr(u) # 1. The latter is automatically satisfied if x(u) = 0. So we just assume that
dr(u) # 1. We need to show that 3'(u) # 0. Since « is unit speed, we have

B (u) = t(u) +dn'(u) = t(u) + dAt (u) = t(u) + dr(u)An(u) =
= t(u) + dr(u)A%t(u) = t(u) — dr(w)t(u) = (1 — ds(u))t(u),
with A = ((1)
The initial assumption implies that (1 — dk(u)) # 0 and, therefore B'(u) # 0, i.e., B(u) is regular.

_01) and vectors t and n are understood as columns. Note that |[t(u)| = 1, i.e., t(u) # 0.

In the case k(u) # 0 and dr(u) = 1, i.e., d = 1/k(u), we obviously have 3'(u) = 0, i.e., B(u) is singular.

(b) The evolute is only defined in the case that we have x(u) # 0 for all u. So we assume this. We have
seen in (a) that the singular points of the parallels are precisely those 3(u) for which we have dx(u) = 1, i.e.,
d = 1/k(u). This means that the set fo singular points of all parallels is

{a(u)+dn(u)|uel, d=1/k(u)} = {a(u) + ﬁn(u) |uel}

which is precisely the parametrization of the evolute of .

Let a(u) : I — R? be a smooth regular curve. Suppose there exists uy € I such that the distance
||a(u)|| from the origin to the trace of a is maximal at ug. Show that the curvature x(up) of  at
up satisfies

|k (uo)| = 1/]]e(uo)l|

Solution:

Note first that the both sides of the inequality we want to prove do not depend on the parametrization, so
we may assume without loss of generality that « is parametrized by arc length.

Consider the function f(u) = ||a|/?>. Since f(u) has a maximum at ug, the first derivative of f(u) at wg
vanishes (cf. Exercise 1.4(b)), and the second derivative is non-positive. Thus, we have

0> f"(uo) = (cx(u) - ex(w))"|uy = (20 (u) - ex(w))'|uy = & (uo) - cx(uo) + 2] &' (uo)|* = & (uo) - x(uo) + 2

To satisfy the inequality above, we must have o' (ug) - @(ug) < —1, which implies |a” (ug) - @(ug)| > 1, and
therefore
[ (uo)| = [l (uo)| = 1/llex(uo)|

Contact with circles. The points (z,y) € R? of a circle are given as solutions of the equation
C(z,y) = 0 where
Clz,y) = (z—a)’ + (y —b)* = A

Let o = (z(u),y(u)) be a plane curve. Suppose that the point a(ug) is also on some circle defined
by C(z,y). Then C vanishes at (z(up),y(up)) and the equation g(u) = 0 with

g(u) = C(a(w),y(u) = (z(u) — a)* + (y(u) = b)* — A

has a solution at ug. If ug is a multiple solution of the equation, with ¢(* (up) =0fori=1,...,k—1
but ¢ (ug) # 0, we say that the curve a and the circle have k-point contact at cu(ug).



(a) Let a circle be tangent to a at a(ug). Show that a and the circle have at least 2-point contact
at a(ug).

(b) Suppose that x(up) # 0. Show that o and the circle have at least 3-point contact at a(ug) if
and only if the center of the circle is the center of curvature of a at a(up).

(c) Show that e and the circle have at least 4-point contact if and only if the center of the circle is
the center of curvature of a at ax(ug) and a(ug) is a vertex of .

Solution:

Denote by ¢ = (a,b) the center of the circle C(x,y) = 0. Then the function g(u) = C(z(u),y(u)) =
(x(u) —a)? + (y(u) — b)? — X can be written as

(a) Differentiating g(u), we obtain

g'(u) =2(a(u) — ¢) - &' (u)
which vanishes if and only if &'(u) is orthogonal to a(u) — ¢. Note that a(u) — ¢ is a radius of the circle,
and the vector a’(u) is orthogonal to a radius if and only if it is tangent to the circle.

(b) Differentiating ¢'(u), we obtain
9" (u) = 2(e(u) — €) - & (u) + 2|/ (u)]|?

Since a(u) — ¢ is orthogonal to a’(u), it is collinear with (), namely, it is equal to +||a(u) — ¢||n. Assume
k(u) > 0 (if kK(u) < 0 the computations are similar), then o’ (u) = —||a(u) — ¢||n. Thus, ¢"”(u) = 0 if and
only if

—2||e(u) = en - & (u) + 2]’ (w)]|* = 0,
which is equivalent to

_ e/ (W)l

la(u) —ell =

The latter is equal to 1/k(u) (see Exercise 2.2).

n-a'(u)

(¢) Again, assume k(u) > 0. According to (b), we can write
9" (u) = —2[le(u) — e|n - & (u) + 2/ (u)||* =
= —2[lev(u) — e|ls(w)]la (w)||* + 2] (w) || = 2[le (w) |*(1 — #(u) ]| a(u) - c]])
Differentiating this expression, we get
9" (u) = 4" (u) - &/ (u)(1 — ()| a(u) — ell) + 2[la (W) |*(~[|a(u) — e]|'k(u) — [le(w) — ||’ (w))

Since the center c of the circle coincides with the center of curvature of a, the first summand iz equal to zero.
The derivative of ||a(u) — ¢|| is also zero since a'(u) is orthogonal to a(u) — ¢ (cf. (a) or Exercise 1.4(b)).
Thus, ¢"(u) = 0 if and only if «'(u) = 0, or, equivalently, a(u) is a vertex of a.



