Differential Geometry III, Homework 4 (Week 4)

Due date for starred problems: Thursday, November 10.

Space curves - 1

4.1. Check that for two curves $\boldsymbol{\alpha}, \boldsymbol{\beta}: I \rightarrow \mathbb{R}^{3}$ holds

$$
(\boldsymbol{\alpha}(u) \times \boldsymbol{\beta}(u))^{\prime}=\boldsymbol{\alpha}^{\prime}(u) \times \boldsymbol{\beta}(u)+\boldsymbol{\alpha}(u) \times \boldsymbol{\beta}^{\prime}(u)
$$

where $\boldsymbol{\alpha} \times \boldsymbol{\beta}$ is the cross-product in \mathbb{R}^{3}.
4.2. (\star) Find the curvature and torsion of the curve

$$
\boldsymbol{\alpha}(u)=\left(a u, b u^{2}, c u^{3}\right)
$$

4.3. (\star) Assume that $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is a regular space curve parametrized by arc length.
(a) Determine all regular curves with vanishing curvature κ.

Hint: use Theorem 4.6
(b) Show that if the torsion τ of $\boldsymbol{\alpha}$ vanishes, then the trace of $\boldsymbol{\alpha}$ lies in a plane.

Hint: do NOT use Theorem 4.6
4.4. Assume that $\boldsymbol{\alpha}(s)=(x(s), y(s), 0)$, i.e., the trace of $\boldsymbol{\alpha}$ lies in the plane $z=0$. Calculate the curvature κ of $\boldsymbol{\alpha}$ and its torsion τ. What is the relation of the curvature κ of the space curve $\boldsymbol{\alpha}$ and the (signed) curvature $\bar{\kappa}$ of the plane curve $\overline{\boldsymbol{\alpha}}: I \rightarrow \mathbb{R}^{2}$ defined by $\overline{\boldsymbol{\alpha}}(s)=(x(s), y(s))$ (i.e., the projection of the space curve $\boldsymbol{\alpha}$ to the plane $z=0$)?
4.5. Consider the regular curve given by

$$
\boldsymbol{\alpha}(s)=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c}\right), \quad s \in \mathbb{R}
$$

where $a, b, c>0$ and $c^{2}=a^{2}+b^{2}$. The curve $\boldsymbol{\alpha}$ is called a helix.
(a) Show that the trace of $\boldsymbol{\alpha}$ lies on the cylinder $x^{2}+y^{2}=a^{2}$.
(b) Show that $\boldsymbol{\alpha}$ is parametrized by arc length.
(c) Determine the curvature and torsion of $\boldsymbol{\alpha}$ (and notice that they are both constant).
(d) Determine the equation of the plane through $\boldsymbol{n}(s)$ and $\boldsymbol{t}(s)$ at each point of $\boldsymbol{\alpha}$ (this plane is called the osculating plane).
(e) Show that the line through $\boldsymbol{\alpha}(s)$ in direction $\boldsymbol{n}(s)$ meets the axis of the cylinder orthogonally.
(f) Show that the tangent lines to $\boldsymbol{\alpha}$ make a constant angle with the axis of the cylinder.

Remark: In fact, a helix can be characterized by (a) and (f). If we drop (a), then we obtain a generalized helix (see next homework). Another way how to characterize a helix is by (c), i.e., the fact that the curvature and torsion are constant. Why?

