Durham University Pavel Tumarkin

Differential Geometry III, Homework 4 (Week 4)

Due date for starred problems: Thursday, November 10.

Space curves - 1

4.1. Check that for two curves $\boldsymbol{\alpha}, \boldsymbol{\beta}: I \to \mathbb{R}^3$ holds

$$(\boldsymbol{\alpha}(u) \times \boldsymbol{\beta}(u))' = \boldsymbol{\alpha}'(u) \times \boldsymbol{\beta}(u) + \boldsymbol{\alpha}(u) \times \boldsymbol{\beta}'(u)$$

where $\boldsymbol{\alpha} \times \boldsymbol{\beta}$ is the cross-product in \mathbb{R}^3 .

4.2. (\star) Find the curvature and torsion of the curve

$$\boldsymbol{\alpha}(u) = (au, bu^2, cu^3).$$

4.3. (*) Assume that $\alpha : I \to \mathbb{R}^3$ is a regular space curve parametrized by arc length.

(a) Determine all regular curves with vanishing curvature κ .

Hint: use Theorem 4.6

(b) Show that if the torsion τ of α vanishes, then the trace of α lies in a plane.

Hint: do NOT use Theorem 4.6

- **4.4.** Assume that $\alpha(s) = (x(s), y(s), 0)$, i.e., the trace of α lies in the plane z = 0. Calculate the curvature κ of α and its torsion τ . What is the relation of the curvature κ of the space curve α and the (signed) curvature $\overline{\kappa}$ of the plane curve $\overline{\alpha} : I \to \mathbb{R}^2$ defined by $\overline{\alpha}(s) = (x(s), y(s))$ (i.e., the projection of the space curve α to the plane z = 0)?
- **4.5.** Consider the regular curve given by

$$\boldsymbol{\alpha}(s) = \Big(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\Big), \qquad s \in \mathbb{R},$$

where a, b, c > 0 and $c^2 = a^2 + b^2$. The curve α is called a *helix*.

- (a) Show that the trace of α lies on the cylinder $x^2 + y^2 = a^2$.
- (b) Show that α is parametrized by arc length.
- (c) Determine the curvature and torsion of α (and notice that they are both constant).

(d) Determine the equation of the plane through n(s) and t(s) at each point of α (this plane is called the *osculating plane*).

- (e) Show that the line through $\alpha(s)$ in direction n(s) meets the axis of the cylinder orthogonally.
- (f) Show that the tangent lines to α make a constant angle with the axis of the cylinder.

Remark: In fact, a helix can be characterized by (a) and (f). If we drop (a), then we obtain a *generalized helix* (see next homework). Another way how to characterize a helix is by (c), i.e., the fact that the curvature and torsion are constant. *Why?*