Differential Geometry III, Homework 5 (Week 5)
 Due date for starred problems: Thursday, November 24.

Space curves - 2

5.1. (\star) A curve $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is called a (generalized) helix if its tangent lines make a constant angle with some fixed direction in \mathbb{R}^{3}.
(a) Prove that the curve

$$
\boldsymbol{\alpha}(s)=\left(\frac{a}{c} \int_{s_{0}}^{s} \sin \vartheta(v) \mathrm{d} v, \frac{a}{c} \int_{s_{0}}^{s} \cos \vartheta(v) \mathrm{d} v, \frac{b}{c} s\right)
$$

with $s_{0} \in I, c^{2}=a^{2}+b^{2}, a \neq 0, b \neq 0$ and $\vartheta^{\prime}(s)>0$ is a (generalized) helix.
(b) Assume that $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is a regular curve with $\tau(s) \neq 0$ for all $s \in I$. Prove that $\boldsymbol{\alpha}$ is a (generalized) helix if and only if κ / τ is constant.
5.2. Let $\boldsymbol{\alpha}, \boldsymbol{\beta}$ be regular curves in \mathbb{R}^{3} such that, for each u, the principal normals $\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$ and $\boldsymbol{n}_{\boldsymbol{\beta}}(u)$ are parallel. Prove that the angle between $\boldsymbol{t}_{\boldsymbol{\alpha}}(u)$ and $\boldsymbol{t}_{\boldsymbol{\beta}}(u)$ is independent of u. Prove also that if the line through $\boldsymbol{\alpha}(u)$ in direction $\boldsymbol{n}_{\boldsymbol{\alpha}(u)}$ coincides with the line through $\boldsymbol{\beta}(u)$ in direction $\boldsymbol{n}_{\boldsymbol{\beta}(u)}$ then

$$
\boldsymbol{\beta}(u)=\boldsymbol{\alpha}(u)+r \boldsymbol{n}_{\boldsymbol{\alpha}}(u)
$$

for some real number r.
5.3. (\star) Let $\boldsymbol{\alpha}$ be the curve in \mathbb{R}^{3} given by

$$
\boldsymbol{\alpha}(u)=e^{u}(\cos u, \sin u, 1), \quad u \in \mathbb{R}
$$

If $0<\lambda_{0}<\lambda_{1}$, find the length of the segment of $\boldsymbol{\alpha}$ which lies between the planes $z=\lambda_{0}$ and $z=\lambda_{1}$. Show also that the curvature and torsion of $\boldsymbol{\alpha}$ are both inversely proportional to e^{u}.
5.4. Let $\boldsymbol{\alpha}$ be a curve parametrized by arc length with nowhere vanishing curvature κ and torsion τ. Show that if the trace of $\boldsymbol{\alpha}$ lies on a sphere then

$$
\frac{\tau}{\kappa}=\left(\frac{\kappa^{\prime}}{\tau \kappa^{2}}\right)^{\prime}
$$

Is the converse true?
5.5. Let $\boldsymbol{\alpha}$ be a regular curve parametrized by arc length with $\kappa>0$ and $\tau \neq 0$. Denote by \boldsymbol{n} and \boldsymbol{b} the principal normal and the binormal of $\boldsymbol{\alpha}$.
(a) If $\boldsymbol{\alpha}$ lies on a sphere with center $\boldsymbol{c} \in \mathbb{R}^{3}$ and radius $r>0$, show that

$$
\boldsymbol{\alpha}-\boldsymbol{c}=-\rho \boldsymbol{n}-\rho^{\prime} \sigma \boldsymbol{b}
$$

where $\rho=1 / \kappa$ and $\sigma=-1 / \tau$. Deduce that $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$.
(b) Conversely, if $\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$ has constant value r^{2} and $\rho^{\prime} \neq 0$, show that $\boldsymbol{\alpha}$ lies on a sphere of radius r.
Hint: Show that the curve $\boldsymbol{\alpha}+\rho \boldsymbol{n}+\rho^{\prime} \sigma \boldsymbol{b}$ is constant.

