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Differential Geometry III, Solutions 8 (Week 8)

Tangent plane

8.1. (a) Let x : U → S be a local parametrization of a surface S in some neighborhood of a point
p = (x0, y0, z0) ∈ S. Show that the tangent plane to S at p has an equation(

∂x

∂u
(p)× ∂x

∂v
(p)

)
· (x− x0, y − y0, z − z0) = 0

(b) Let f : R3 → R be a smooth function, and let c ∈ f(R3) be a regular value of f . Show that the
tangent plane of a regular surface

S = {(x, y, z) | f(x, y, z) = c}

at the point p = (x0, y0, z0) ∈ S has equation

∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0) +

∂f

∂z
(p)(z − z0) = 0

Solution:

(a) By definition, the tangent plane to S at p ∈ S is spanned by vectors ∂x
∂u (p) and ∂x

∂v (p) and passes through

p. Let Π be the plane defined by the equation above. Since ∂x
∂u (p)× ∂x

∂v (p) is orthogonal to both ∂x
∂u (p) and

∂x
∂v (p), the both partial derivatives lie in Π. Now, the point p = (x0, y0, z0) itself clearly satisfies the equation.

(b) If α : (−ε, ε)→ S is any curve with α(0) = p, then f(α(u)) ≡ c. Differentiating, we obtain

∇f(p) ·α′(0) = 0,

which implies that the tangent plane is orthogonal to the gradient ∇f(p) =
(

∂f
∂x (p), ∂f∂y (p), ∂f∂z (p)

)
.

8.2. (?) Show that the tangent plane of one-sheeted hyperboloid x2 + y2 − z2 = 1 at point (x, y, 0) is
parallel to the z-axis.

Solution:

Using Exercise 8.1(b), we see that the tangent plane at point (x0, y0, 0) of the hyperboloid has an equation

x0(x− x0) + y0(y − y0) = 0

which is clearly parallel to z-axis.

8.3. Let f : R→ R be a smooth function. Define a surface S as

S = {(x, y, z) |xf(y/x)− z = 0, x 6= 0}

Show that all tangent planes of S pass through the origin (0, 0, 0).



Solution:

The surface is the graph of a smooth function z = xf(y/x), so it has a parametrization

x(x, y) = (x, y, xf(y/x))

First, we compute ∂x
∂x and ∂x

∂y , and then use Exercise 8.1(a).

∂x

∂x
(x, y) =

(
1, 0, f

(y
x

)
− y

x
f ′

(y
x

))
,

∂x

∂y
(x, y) =

(
0, 1, f ′

(y
x

))
Thus,

∂x

∂x
× ∂x

∂y
(x, y) =

(
−f

(y
x

)
+
y

x
f ′

(y
x

)
,−f ′

(y
x

)
, 1
)
,

and an equation of the tangent plane at (x0, y0, z0) ∈ S is(
−f

(
y0
x0

)
+
y0
x0
f ′

(
y0
x0

)
,−f ′

(
y0
x0

)
, 1

)
· (x− x0, y − y0, z − z0) = 0

This plane passes through the origin if and only if(
−f

(
y0
x0

)
+
y0
x0
f ′

(
y0
x0

)
,−f ′

(
y0
x0

)
, 1

)
· (x0, y0, z0) = 0

Indeed, taking into account that

f

(
y0
x0

)
=
z0
x0
,

we have(
−f

(
y0
x0

)
+
y0
x0
f ′

(
y0
x0

)
,−f ′

(
y0
x0

)
, 1

)
· (x0, y0, z0) = − z0

x0
x0 + y0f

′
(
y0
x0

)
− y0f ′

(
y0
x0

)
+ z0 = 0

8.4. Let U ⊂ R2 be open, and let S1 and S2 be two regular surfaces with parametrizations x : U → S1 and
y : U → S2. Define a map ϕ = y ◦ x−1 : S1 → S2. Let p ∈ S1, w ∈ TpS1, and let α : (−ε, ε)→ S1
be an arbitrary regular curve in S1 such that p = α(0) and α′(0) = w. Define β : (−ε, ε)→ S2 as
β = ϕ ◦α.

(a) Show that β′(0) does not depend on the choice of α.

(b) Show that the map dpϕ : TpS1 → Tϕ(p)S2 defined by dpϕ(w) = β′(0) is linear.

Solution:

(a) Define a curve γ : (−ε, ε)→ U by α = x ◦ γ, and define q ∈ U by x(q) = p. Then, by the chain rule,

w = α′(0) = (x ◦ γ)′(0) = dγ(0)x(γ′(0)) = dqx(γ′(0))

Thus,
γ′(0) = ( dqx)−1(w),

where by ( dqx)−1 we mean the left inverse of dqx, namely, a linear map from R3 to R2 satisfying ( dqx)−1 ◦
dqx = idR2 (notice that dqx has no inverse since it is a linear map from R2 to R3). In particular, we see
that γ′(0) does not depend on the choice of α but on the vector w only.

Now, we can write
β = y ◦ γ,

and differentiating this we get

β′(0) = (y ◦ γ)′(0) = dγ(0)y(γ′(0)) = dqy(γ′(0))

Therefore, β′(0) is completely defined by dqy and γ′(0) which do not depend on the choice of α.



(b) As we have seen in (a),

dpϕ(w) = β′(0) = dqy(γ′(0)) = dqy(( dqx)−1(w)) = ( dqy ◦ ( dqx)−1)(w),

which implies
dpϕ = dqy ◦ ( dqx)−1

which is clearly linear as a composition of two linear maps.

8.5. Let α : I → R3 be a regular curve with nonzero curvature parametrized by arc length. Recall that
a canal surface (or tubular surface) S is a surface parametrized by

x(u, v) = α(u) + r(n(u) cos v + b(u) sin v),

where n and b are unit normal and binormal vectors, and r > 0 is a sufficiently small constant.
Find the equation of the tangent plane to S at x(u, v). In particular, show that the tangent plane
at x(u, v) is parallel to α′(u).

Solution: We use Exercise 8.1(a) to compute an equation of the tangent plane.

∂x

∂u
(u, v) = α′(u) + r(n′(u) cos v + b′(u) sin v) = t+ r(−κt− τb) cos v + rτn sin v =

= t(1− rκ cos v) + n(rτ sin v) + b(−rτ cos v),

and
∂x

∂v
(u, v) = r(n(u)(− sin v) + b(u) cos v) = n(−r sin v) + b(r cos v)

Now, computing the cross-product, we get(
∂x

∂u
× ∂x

∂v

)
(u, v) = −r(1− rκ cos v)(n(u) cos v + b(u) sin v)

An equation of the tangent plane to S at point x(u0, v0) with respect to variable q ∈ R3 can be written as

(n(u0) cos v0 + b(u0) sin v0) · (q − (α(u0) + r(n(u0) cos v0 + b(u0) sin v0)) = 0

Since n(u0) cos v0 + b(u0) sin v0 is a unit vector, this is equivalent to

(n(u0) cos v0 + b(u0) sin v0) · (q −α(u0)) = r

In particular, the vector n(u0) cos v0 + b(u0) sin v0 is orthogonal to t(u0) as a linear combination of n(u0)
and b(u0), so the plane is parallel to t(u0).


