Differential Geometry III, Solutions 8 (Week 8)

Tangent plane

8.1. (a) Let $\boldsymbol{x}: U \rightarrow S$ be a local parametrization of a surface S in some neighborhood of a point $\boldsymbol{p}=\left(x_{0}, y_{0}, z_{0}\right) \in S$. Show that the tangent plane to S at \boldsymbol{p} has an equation

$$
\left(\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p}) \times \frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

(b) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function, and let $c \in f\left(\mathbb{R}^{3}\right)$ be a regular value of f. Show that the tangent plane of a regular surface

$$
S=\{(x, y, z) \mid f(x, y, z)=c\}
$$

at the point $\boldsymbol{p}=\left(x_{0}, y_{0}, z_{0}\right) \in S$ has equation

$$
\frac{\partial f}{\partial x}(\boldsymbol{p})\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(\boldsymbol{p})\left(y-y_{0}\right)+\frac{\partial f}{\partial z}(\boldsymbol{p})\left(z-z_{0}\right)=0
$$

Solution:

(a) By definition, the tangent plane to S at $\boldsymbol{p} \in S$ is spanned by vectors $\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p})$ and $\frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})$ and passes through \boldsymbol{p}. Let Π be the plane defined by the equation above. Since $\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p}) \times \frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})$ is orthogonal to both $\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p})$ and $\frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})$, the both partial derivatives lie in Π. Now, the point $\boldsymbol{p}=\left(x_{0}, y_{0}, z_{0}\right)$ itself clearly satisfies the equation.
(b) If $\boldsymbol{\alpha}:(-\varepsilon, \varepsilon) \rightarrow S$ is any curve with $\boldsymbol{\alpha}(0)=\boldsymbol{p}$, then $f(\boldsymbol{\alpha}(u)) \equiv c$. Differentiating, we obtain

$$
\nabla f(p) \cdot \boldsymbol{\alpha}^{\prime}(0)=0
$$

which implies that the tangent plane is orthogonal to the gradient $\nabla f(p)=\left(\frac{\partial f}{\partial x}(\boldsymbol{p}), \frac{\partial f}{\partial y}(\boldsymbol{p}), \frac{\partial f}{\partial z}(\boldsymbol{p})\right)$.
8.2. (\star) Show that the tangent plane of one-sheeted hyperboloid $x^{2}+y^{2}-z^{2}=1$ at point $(x, y, 0)$ is parallel to the z-axis.

Solution:

Using Exercise 8.1(b), we see that the tangent plane at point $\left(x_{0}, y_{0}, 0\right)$ of the hyperboloid has an equation

$$
x_{0}\left(x-x_{0}\right)+y_{0}\left(y-y_{0}\right)=0
$$

which is clearly parallel to z-axis.
8.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. Define a surface S as

$$
S=\{(x, y, z) \mid x f(y / x)-z=0, x \neq 0\}
$$

Show that all tangent planes of S pass through the origin $(0,0,0)$.

Solution:

The surface is the graph of a smooth function $z=x f(y / x)$, so it has a parametrization

$$
\boldsymbol{x}(x, y)=(x, y, x f(y / x))
$$

First, we compute $\frac{\partial \boldsymbol{x}}{\partial x}$ and $\frac{\partial \boldsymbol{x}}{\partial y}$, and then use Exercise 8.1(a).

$$
\begin{aligned}
& \frac{\partial \boldsymbol{x}}{\partial x}(x, y)=\left(1,0, f\left(\frac{y}{x}\right)-\frac{y}{x} f^{\prime}\left(\frac{y}{x}\right)\right) \\
& \frac{\partial \boldsymbol{x}}{\partial y}(x, y)=\left(0,1, f^{\prime}\left(\frac{y}{x}\right)\right)
\end{aligned}
$$

Thus,

$$
\frac{\partial \boldsymbol{x}}{\partial x} \times \frac{\partial \boldsymbol{x}}{\partial y}(x, y)=\left(-f\left(\frac{y}{x}\right)+\frac{y}{x} f^{\prime}\left(\frac{y}{x}\right),-f^{\prime}\left(\frac{y}{x}\right), 1\right),
$$

and an equation of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right) \in S$ is

$$
\left(-f\left(\frac{y_{0}}{x_{0}}\right)+\frac{y_{0}}{x_{0}} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right),-f^{\prime}\left(\frac{y_{0}}{x_{0}}\right), 1\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

This plane passes through the origin if and only if

$$
\left(-f\left(\frac{y_{0}}{x_{0}}\right)+\frac{y_{0}}{x_{0}} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right),-f^{\prime}\left(\frac{y_{0}}{x_{0}}\right), 1\right) \cdot\left(x_{0}, y_{0}, z_{0}\right)=0
$$

Indeed, taking into account that

$$
f\left(\frac{y_{0}}{x_{0}}\right)=\frac{z_{0}}{x_{0}}
$$

we have

$$
\left(-f\left(\frac{y_{0}}{x_{0}}\right)+\frac{y_{0}}{x_{0}} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right),-f^{\prime}\left(\frac{y_{0}}{x_{0}}\right), 1\right) \cdot\left(x_{0}, y_{0}, z_{0}\right)=-\frac{z_{0}}{x_{0}} x_{0}+y_{0} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right)-y_{0} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right)+z_{0}=0
$$

8.4. Let $U \subset \mathbb{R}^{2}$ be open, and let S_{1} and S_{2} be two regular surfaces with parametrizations $\boldsymbol{x}: U \rightarrow S_{1}$ and $\boldsymbol{y}: U \rightarrow S_{2}$. Define a map $\boldsymbol{\varphi}=\boldsymbol{y} \circ \boldsymbol{x}^{-1}: S_{1} \rightarrow S_{2}$. Let $\boldsymbol{p} \in S_{1}, \boldsymbol{w} \in T_{\boldsymbol{p}} S_{1}$, and let $\boldsymbol{\alpha}:(-\varepsilon, \varepsilon) \rightarrow S_{1}$ be an arbitrary regular curve in S_{1} such that $\boldsymbol{p}=\boldsymbol{\alpha}(0)$ and $\boldsymbol{\alpha}^{\prime}(0)=\boldsymbol{w}$. Define $\boldsymbol{\beta}:(-\varepsilon, \varepsilon) \rightarrow S_{2}$ as $\boldsymbol{\beta}=\boldsymbol{\varphi} \circ \boldsymbol{\alpha}$.
(a) Show that $\boldsymbol{\beta}^{\prime}(0)$ does not depend on the choice of $\boldsymbol{\alpha}$.
(b) Show that the map $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{\varphi}: T_{\boldsymbol{p}} S_{1} \rightarrow T_{\boldsymbol{\varphi}(\boldsymbol{p})} S_{2}$ defined by $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{\varphi}(\boldsymbol{w})=\boldsymbol{\beta}^{\prime}(0)$ is linear.

Solution:

(a) Define a curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow U$ by $\boldsymbol{\alpha}=\boldsymbol{x} \circ \boldsymbol{\gamma}$, and define $\boldsymbol{q} \in U$ by $\boldsymbol{x}(\boldsymbol{q})=\boldsymbol{p}$. Then, by the chain rule,

$$
\boldsymbol{w}=\boldsymbol{\alpha}^{\prime}(0)=(\boldsymbol{x} \circ \boldsymbol{\gamma})^{\prime}(0)=\mathrm{d}_{\boldsymbol{\gamma}(0)} \boldsymbol{x}\left(\gamma^{\prime}(0)\right)=\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\left(\gamma^{\prime}(0)\right)
$$

Thus,

$$
\gamma^{\prime}(0)=\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\right)^{-1}(\boldsymbol{w})
$$

where by $\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\right)^{-1}$ we mean the left inverse of $\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}$, namely, a linear map from \mathbb{R}^{3} to \mathbb{R}^{2} satisfying $\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\right)^{-1} \circ$ $\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}=\operatorname{id}_{\mathbb{R}^{2}}$ (notice that $\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}$ has no inverse since it is a linear map from \mathbb{R}^{2} to \mathbb{R}^{3}). In particular, we see that $\gamma^{\prime}(0)$ does not depend on the choice of $\boldsymbol{\alpha}$ but on the vector \boldsymbol{w} only.
Now, we can write

$$
\boldsymbol{\beta}=\boldsymbol{y} \circ \gamma
$$

and differentiating this we get

$$
\boldsymbol{\beta}^{\prime}(0)=(\boldsymbol{y} \circ \gamma)^{\prime}(0)=\mathrm{d}_{\boldsymbol{\gamma}(0)} \boldsymbol{y}\left(\gamma^{\prime}(0)\right)=\mathrm{d}_{\boldsymbol{q}} \boldsymbol{y}\left(\gamma^{\prime}(0)\right)
$$

Therefore, $\boldsymbol{\beta}^{\prime}(0)$ is completely defined by $\mathrm{d}_{\boldsymbol{q}} \boldsymbol{y}$ and $\boldsymbol{\gamma}^{\prime}(0)$ which do not depend on the choice of $\boldsymbol{\alpha}$.
(b) As we have seen in (a),

$$
\mathrm{d}_{\boldsymbol{p}} \boldsymbol{\varphi}(\boldsymbol{w})=\boldsymbol{\beta}^{\prime}(0)=\mathrm{d}_{\boldsymbol{q}} \boldsymbol{y}\left(\gamma^{\prime}(0)\right)=\mathrm{d}_{\boldsymbol{q}} \boldsymbol{y}\left(\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\right)^{-1}(w)\right)=\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{y} \circ\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\right)^{-1}\right)(\boldsymbol{w})
$$

which implies

$$
\mathrm{d}_{\boldsymbol{p}} \boldsymbol{\varphi}=\mathrm{d}_{\boldsymbol{q}} \boldsymbol{y} \circ\left(\mathrm{d}_{\boldsymbol{q}} \boldsymbol{x}\right)^{-1}
$$

which is clearly linear as a composition of two linear maps.
8.5. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ be a regular curve with nonzero curvature parametrized by arc length. Recall that a canal surface (or tubular surface) S is a surface parametrized by

$$
\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(u)+r(\boldsymbol{n}(u) \cos v+\boldsymbol{b}(u) \sin v)
$$

where \boldsymbol{n} and \boldsymbol{b} are unit normal and binormal vectors, and $r>0$ is a sufficiently small constant. Find the equation of the tangent plane to S at $\boldsymbol{x}(u, v)$. In particular, show that the tangent plane at $\boldsymbol{x}(u, v)$ is parallel to $\boldsymbol{\alpha}^{\prime}(u)$.

Solution: We use Exercise 8.1(a) to compute an equation of the tangent plane.

$$
\begin{aligned}
\frac{\partial \boldsymbol{x}}{\partial u}(u, v)=\boldsymbol{\alpha}^{\prime}(u)+r\left(\boldsymbol{n}^{\prime}(u) \cos v+\boldsymbol{b}^{\prime}(u) \sin v\right)=\boldsymbol{t}+r(-\kappa \boldsymbol{t} & -\tau \boldsymbol{b}) \cos v+r \tau \boldsymbol{n} \sin v= \\
& =\boldsymbol{t}(1-r \kappa \cos v)+\boldsymbol{n}(r \tau \sin v)+\boldsymbol{b}(-r \tau \cos v)
\end{aligned}
$$

and

$$
\frac{\partial \boldsymbol{x}}{\partial v}(u, v)=r(\boldsymbol{n}(u)(-\sin v)+\boldsymbol{b}(u) \cos v)=\boldsymbol{n}(-r \sin v)+\boldsymbol{b}(r \cos v)
$$

Now, computing the cross-product, we get

$$
\left(\frac{\partial \boldsymbol{x}}{\partial u} \times \frac{\partial \boldsymbol{x}}{\partial v}\right)(u, v)=-r(1-r \kappa \cos v)(\boldsymbol{n}(u) \cos v+\boldsymbol{b}(u) \sin v)
$$

An equation of the tangent plane to S at point $\boldsymbol{x}\left(u_{0}, v_{0}\right)$ with respect to variable $\boldsymbol{q} \in \mathbb{R}^{3}$ can be written as

$$
\left(\boldsymbol{n}\left(u_{0}\right) \cos v_{0}+\boldsymbol{b}\left(u_{0}\right) \sin v_{0}\right) \cdot\left(\boldsymbol{q}-\left(\boldsymbol{\alpha}\left(u_{0}\right)+r\left(\boldsymbol{n}\left(u_{0}\right) \cos v_{0}+\boldsymbol{b}\left(u_{0}\right) \sin v_{0}\right)\right)=0\right.
$$

Since $\boldsymbol{n}\left(u_{0}\right) \cos v_{0}+\boldsymbol{b}\left(u_{0}\right) \sin v_{0}$ is a unit vector, this is equivalent to

$$
\left(\boldsymbol{n}\left(u_{0}\right) \cos v_{0}+\boldsymbol{b}\left(u_{0}\right) \sin v_{0}\right) \cdot\left(\boldsymbol{q}-\boldsymbol{\alpha}\left(u_{0}\right)\right)=r
$$

In particular, the vector $\boldsymbol{n}\left(u_{0}\right) \cos v_{0}+\boldsymbol{b}\left(u_{0}\right) \sin v_{0}$ is orthogonal to $\boldsymbol{t}\left(u_{0}\right)$ as a linear combination of $\boldsymbol{n}\left(u_{0}\right)$ and $\boldsymbol{b}\left(u_{0}\right)$, so the plane is parallel to $\boldsymbol{t}\left(u_{0}\right)$.

