Differential Geometry III, Homework 8 (Week 8)

Due date for starred problems: Thursday, December 8.

Tangent plane

8.1. (a) Let $\boldsymbol{x}: U \rightarrow S$ be a local parametrization of a surface S in some neiborhood of a point $\boldsymbol{p}=\left(x_{0}, y_{0}, z_{0}\right) \in S$. Show that the tangent plane to S at \boldsymbol{p} has equation

$$
\left(\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p}) \times \frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

(b) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function, and let $c \in f\left(\mathbb{R}^{3}\right)$ be a regular value of f. Show that the tangent plane of the regular surface

$$
S=\{(x, y, z) \mid f(x, y, z)=c\}
$$

at the point $\boldsymbol{p}=\left(x_{0}, y_{0}, z_{0}\right) \in S$ has equation

$$
\frac{\partial f}{\partial x}(\boldsymbol{p})\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(\boldsymbol{p})\left(y-y_{0}\right)+\frac{\partial f}{\partial z}(\boldsymbol{p})\left(z-z_{0}\right)=0
$$

8.2. (\star) Show that the tangent plane of one-sheeted hyperboloid $x^{2}+y^{2}-z^{2}=1$ at point $(x, y, 0)$ is parallel to the z-axis.
8.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. Define a surface S as

$$
S=\{(x, y, z) \mid x f(y / x)-z=0, x \neq 0\}
$$

Show that all tangent planes of S pass through the origin $(0,0,0)$.
8.4. Let $U \subset \mathbb{R}^{2}$ be open, and let S_{1} and S_{2} be two regular surfaces with parametrizations $\boldsymbol{x}: U \rightarrow S_{1}$ and $\boldsymbol{y}: U \rightarrow S_{2}$. Define a map $\boldsymbol{\varphi}=\boldsymbol{y} \circ \boldsymbol{x}^{-1}: S_{1} \rightarrow S_{2}$. Let $\boldsymbol{p} \in S_{1}, \boldsymbol{w} \in T_{\boldsymbol{p}} S_{1}$, and let $\boldsymbol{\alpha}:(-\varepsilon, \varepsilon) \rightarrow S_{1}$ be an arbitrary regular curve in S_{1} such that $\boldsymbol{p}=\boldsymbol{\alpha}(0)$ and $\boldsymbol{\alpha}^{\prime}(0)=\boldsymbol{w}$. Define $\boldsymbol{\beta}:(-\varepsilon, \varepsilon) \rightarrow S_{2}$ as $\boldsymbol{\beta}=\boldsymbol{\varphi} \circ \boldsymbol{\alpha}$.
(a) Show that $\boldsymbol{\beta}^{\prime}(0)$ does not depend on the choice of $\boldsymbol{\alpha}$.
(b) Show that the $\operatorname{map}^{\mathrm{d}} \boldsymbol{\rho} \boldsymbol{\varphi}: T_{\boldsymbol{p}} S_{1} \rightarrow T_{\boldsymbol{\varphi}(\boldsymbol{p})} S_{2}$ defined by $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{\varphi}(\boldsymbol{w})=\boldsymbol{\beta}^{\prime}(0)$ is linear.
8.5. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ be a regular curve with nonzero curvature parametrized by arc length. Recall that a canal surface (or tubular surface) S is a surface parametrized by

$$
\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(u)+r(\boldsymbol{n}(u) \cos v+\boldsymbol{b}(u) \sin v)
$$

where \boldsymbol{n} and \boldsymbol{b} are unit normal and binormal vectors, and $r>0$ is a sufficiently small constant. Find the equation of the tangent plane to S at $\boldsymbol{x}(u, v)$. In particular, show that the tangent plane at $\boldsymbol{x}(u, v)$ is parallel to $\boldsymbol{\alpha}^{\prime}(u)$.

