Durham University Pavel Tumarkin

Differential Geometry III, Term 1 (Section 2)

2 Regular curves in \mathbb{R}^n

Definition 2.1.

(a) A smooth curve in \mathbb{R}^n is a smooth (that is, infinitely differentiable) map

$$\boldsymbol{\alpha}\colon I\to\mathbb{R}^n,$$

where I is an open interval of \mathbb{R} (so I could be (a, b) or $(-\infty, b)$ or $(a, +\infty)$ or \mathbb{R}).

- (b) The *image*, $\alpha(I)$, of I under α is called the *trace* of α . The variable $u \in I$ is called the *parameter* of α .
- (c) If we write

 $\boldsymbol{\alpha}(u) = (\alpha_1(u), \alpha_2(u), \dots, \alpha_n(u))$

then each $\alpha_i \colon I \to \mathbb{R}$ is smooth. The vector

$$\boldsymbol{\alpha}'(u) = (\alpha_1'(u), \alpha_2'(u), \dots, \alpha_n'(u))$$

is the tangent vector to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u)$.

- (d) The curve $\boldsymbol{\alpha}$ is regular if $\boldsymbol{\alpha}'(u) \neq \mathbf{0} = (0, \dots, 0)$ for all $u \in I$. The curve $\boldsymbol{\alpha}$ is singular at $\boldsymbol{\alpha}(u)$ if $\boldsymbol{\alpha}'(u) = \mathbf{0}$.
- (e) If α is a regular curve, we define the unit tangent vector

$$\boldsymbol{t}(u) = \frac{\boldsymbol{\alpha}'(u)}{\|\boldsymbol{\alpha}'(u)\|}.$$

If we want to stress that t is the unit tangent vector of the curve α , we also write t_{α} .

(f) If $\|\alpha'(u)\| = 1$ for all $u \in I$ then α is called *unit speed*.

Example 2.2.

- (a) The unit circle. $\alpha \colon \mathbb{R} \longrightarrow \mathbb{R}^2$, $\alpha(u) = (\cos u, \sin u)$. α is smooth and unit speed.
- (b) The helix. $\alpha : \mathbb{R} \to \mathbb{R}^3$, $\alpha(u) = (\cos u, \sin u, u)$. α is smooth and regular.
- (c) The cusp. $\alpha \colon \mathbb{R} \longrightarrow \mathbb{R}^2$, $\alpha = (u^3, u^2)$ so α is smooth. But $\alpha'(s) = (3u^2, 2u)$, so $\alpha'(0) = (0, 0)$.
- (d) The node. $\boldsymbol{\alpha} : \mathbb{R} \to \mathbb{R}^2$, $\boldsymbol{\alpha}(u) = (u^3 u, u^2 1)$. $\boldsymbol{\alpha}$ is smooth and regular but not injective, since $\boldsymbol{\alpha}(-1) = \boldsymbol{\alpha}(1)$.

Definition 2.3. Let $\alpha: I \longrightarrow \mathbb{R}^n$ be a smooth and regular curve. A *change of parameter* for α is a function $h: J \longrightarrow I$ where J is an open interval of \mathbb{R} satisfying

- (a) h is smooth;
- (b) $h'(t) \neq 0$ for all $t \in J$;
- (c) h(J) = I.

Remark. $\tilde{\boldsymbol{\alpha}} = \boldsymbol{\alpha} \circ h: J \longrightarrow \mathbb{R}^n$ is a smooth curve with the same trace as $\boldsymbol{\alpha}$.

Example 2.4. In the Example 2.2(a) take $J = \mathbb{R}$, h(v) = 2v. Then

$$\tilde{\boldsymbol{\alpha}}(v) = (\boldsymbol{\alpha} \circ h)(v) = \boldsymbol{\alpha}(2v) = (\cos 2v, \sin 2v).$$

Definition 2.5. The arc length of a curve $\alpha \colon I \longrightarrow \mathbb{R}^n$, measured from a point $\alpha(u_0)$ for some $u_0 \in I$, is

$$\ell(u) := \int_{u_0}^u \|\boldsymbol{\alpha}'(v)\| \,\mathrm{d}v.$$

Remark. If α is unit speed $(\|\alpha'(u)\| = 1)$, then

$$\ell(u) = \int_{u_0}^u \| \boldsymbol{\alpha}'(s) \| \, \mathrm{d}s = u - u_0.$$

So the parameter u measures the arc length (up to an additive constant) and is called *arc length parameter*, α is *parametrized by arc length*.

Proposition 2.6. Let $\alpha: I \longrightarrow \mathbb{R}^n$ be a smooth and regular curve. Choose $u_o \in I$, and let $\ell: I \longrightarrow \mathbb{R}$ be the arc length of α w.r. to u_0 . Define $J = \ell(I)$. Then ℓ^{-1} is a parameter change, and

$$\boldsymbol{\beta} = \boldsymbol{\alpha} \circ \ell^{-1} \colon J \longrightarrow \mathbb{R}^n$$

is parametrized by arc length.

Example 2.7. The catenary.

$$\boldsymbol{\alpha} \colon \mathbb{R} \longrightarrow \mathbb{R}^2, \quad \boldsymbol{\alpha}(u) = (u, \cosh u) \quad \Rightarrow \boldsymbol{\alpha}'(u) = (1, \sinh u)$$

 $\boldsymbol{\alpha}$ is regular, $\|\boldsymbol{\alpha}'(u)\| = \sqrt{1 + \sinh^2 u} = \cosh u$,

$$s = \ell(u) = \int_0^u \|\boldsymbol{\alpha}'(t)\| \, \mathrm{d}t = \int_0^u \cosh t \, \mathrm{d}t = \sinh u$$

where we fixed $u_0 = 0$, and thus $u = \ell^{-1}(s) = \sinh^{-1} s$. So the arc-length parametrization of the catenary is

$$\beta = \alpha(\ell^{-1}(s)) = \left(\ln(s + \sqrt{s^2 + 1}), \cosh(\ln(s + \sqrt{s^2 + 1}))\right).$$