Differential Geometry III, Term 1 (Section 2)

2 Regular curves in \mathbb{R}^{n}

Definition 2.1.

(a) A smooth curve in \mathbb{R}^{n} is a smooth (that is, infinitely differentiable) map

$$
\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{n}
$$

where I is an open interval of \mathbb{R} (so I could be (a, b) or $(-\infty, b)$ or $(a,+\infty)$ or \mathbb{R}).
(b) The image, $\boldsymbol{\alpha}(I)$, of I under $\boldsymbol{\alpha}$ is called the trace of $\boldsymbol{\alpha}$. The variable $u \in I$ is called the parameter of $\boldsymbol{\alpha}$.
(c) If we write

$$
\boldsymbol{\alpha}(u)=\left(\alpha_{1}(u), \alpha_{2}(u), \ldots, \alpha_{n}(u)\right)
$$

then each $\alpha_{i}: I \rightarrow \mathbb{R}$ is smooth. The vector

$$
\boldsymbol{\alpha}^{\prime}(u)=\left(\alpha_{1}^{\prime}(u), \alpha_{2}^{\prime}(u), \ldots, \alpha_{n}^{\prime}(u)\right)
$$

is the tangent vector to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u)$.
(d) The curve $\boldsymbol{\alpha}$ is regular if $\boldsymbol{\alpha}^{\prime}(u) \neq \mathbf{0}=(0, \ldots, 0)$ for all $u \in I$. The curve $\boldsymbol{\alpha}$ is singular at $\boldsymbol{\alpha}(u)$ if $\boldsymbol{\alpha}^{\prime}(u)=\mathbf{0}$.
(e) If $\boldsymbol{\alpha}$ is a regular curve, we define the unit tangent vector

$$
\boldsymbol{t}(u)=\frac{\boldsymbol{\alpha}^{\prime}(u)}{\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|} .
$$

If we want to stress that \boldsymbol{t} is the unit tangent vector of the curve $\boldsymbol{\alpha}$, we also write $\boldsymbol{t}_{\boldsymbol{\alpha}}$.
(f) If $\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|=1$ for all $u \in I$ then $\boldsymbol{\alpha}$ is called unit speed.

Example 2.2.

(a) The unit circle. $\boldsymbol{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}^{2}, \boldsymbol{\alpha}(u)=(\cos u, \sin u)$. $\boldsymbol{\alpha}$ is smooth and unit speed.
(b) The helix. $\boldsymbol{\alpha}: \mathbb{R} \rightarrow \mathbb{R}^{3}, \boldsymbol{\alpha}(u)=(\cos u, \sin u, u)$. $\boldsymbol{\alpha}$ is smooth and regular.
(c) The cusp. $\boldsymbol{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}^{2}, \boldsymbol{\alpha}=\left(u^{3}, u^{2}\right)$ so $\boldsymbol{\alpha}$ is smooth. But $\boldsymbol{\alpha}^{\prime}(s)=\left(3 u^{2}, 2 u\right)$, so $\boldsymbol{\alpha}^{\prime}(0)=(0,0)$.
(d) The node. $\boldsymbol{\alpha}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \boldsymbol{\alpha}(u)=\left(u^{3}-u, u^{2}-1\right)$. $\boldsymbol{\alpha}$ is smooth and regular but not injective, since $\boldsymbol{\alpha}(-1)=\boldsymbol{\alpha}(1)$.

Definition 2.3. Let $\alpha: I \longrightarrow \mathbb{R}^{n}$ be a smooth and regular curve. A change of parameter for $\boldsymbol{\alpha}$ is a function $h: J \longrightarrow I$ where J is an open interval of \mathbb{R} satisfying
(a) h is smooth;
(b) $h^{\prime}(t) \neq 0$ for all $t \in J$;
(c) $h(J)=I$.

Remark. $\tilde{\boldsymbol{\alpha}}=\boldsymbol{\alpha} \circ h: J \longrightarrow \mathbb{R}^{n}$ is a smooth curve with the same trace as $\boldsymbol{\alpha}$.
Example 2.4. In the Example 2.2(a) take $J=\mathbb{R}, h(v)=2 v$. Then

$$
\tilde{\boldsymbol{\alpha}}(v)=(\boldsymbol{\alpha} \circ h)(v)=\boldsymbol{\alpha}(2 v)=(\cos 2 v, \sin 2 v) .
$$

Definition 2.5. The arc length of a curve $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{n}$, measured from a point $\boldsymbol{\alpha}\left(u_{0}\right)$ for some $u_{0} \in I$, is

$$
\ell(u):=\int_{u_{0}}^{u}\left\|\boldsymbol{\alpha}^{\prime}(v)\right\| \mathrm{d} v
$$

Remark. If $\boldsymbol{\alpha}$ is unit speed $\left(\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|=1\right)$, then

$$
\ell(u)=\int_{u_{0}}^{u}\left\|\boldsymbol{\alpha}^{\prime}(s)\right\| \mathrm{d} s=u-u_{0}
$$

So the parameter u measures the arc length (up to an additive constant) and is called arc length parameter, $\boldsymbol{\alpha}$ is parametrized by arc length.

Proposition 2.6. Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{n}$ be a smooth and regular curve. Choose $u_{o} \in I$, and let $\ell: I \longrightarrow \mathbb{R}$ be the arc length of $\boldsymbol{\alpha}$ w.r. to u_{0}. Define $J=\ell(I)$. Then ℓ^{-1} is a parameter change, and

$$
\boldsymbol{\beta}=\boldsymbol{\alpha} \circ \ell^{-1}: J \longrightarrow \mathbb{R}^{n}
$$

is parametrized by arc length.
Example 2.7. The catenary.

$$
\boldsymbol{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}^{2}, \quad \boldsymbol{\alpha}(u)=(u, \cosh u) \quad \Rightarrow \boldsymbol{\alpha}^{\prime}(u)=(1, \sinh u)
$$

$\boldsymbol{\alpha}$ is regular, $\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|=\sqrt{1+\sinh ^{2} u}=\cosh u$,

$$
s=\ell(u)=\int_{0}^{u}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| \mathrm{d} t=\int_{0}^{u} \cosh t \mathrm{~d} t=\sinh u
$$

where we fixed $u_{0}=0$, and thus $u=\ell^{-1}(s)=\sinh ^{-1} s$. So the arc-length parametrization of the catenary is

$$
\boldsymbol{\beta}=\boldsymbol{\alpha}\left(\ell^{-1}(s)\right)=\left(\ln \left(s+\sqrt{s^{2}+1}\right), \cosh \left(\ln \left(s+\sqrt{s^{2}+1}\right)\right)\right) .
$$

