Durham University Pavel Tumarkin

Michaelmas 2016

Differential Geometry III, Term 1 (Section 3)

3 Plane curves

3.1 Tangent and normal vectors. Curvature

Let $\boldsymbol{\alpha} \colon I \longrightarrow \mathbb{R}^2$ be a plane curve parametrized by arc length, i.e., $\boldsymbol{\alpha}'(s) = \mathbf{t}(s)$ is a unit vector.

Definition 3.1. The *unit normal vector* $\mathbf{n}(s)$ is the vector obtained by rotating $\mathbf{t}(s)$ anticlockwise through $\pi/2$.

In coordinates, if $\alpha(s) = (x(s), y(s))$, then

$$\mathbf{t}(s) = (x'(s), y'(s)), \qquad \mathbf{n}(s) = (-y'(s), x'(s))$$

Remark. Differentiating the equation $1 = ||\mathbf{t}(s)||^2 = \mathbf{t}(s) \cdot \mathbf{t}(s)$ gives

$$0 = \mathbf{t}'(s) \cdot \mathbf{t}(s) + \mathbf{t}(s) \cdot \mathbf{t}'(s) = 2\mathbf{t}'(s) \cdot \mathbf{t}(s).$$

In particular, $\mathbf{t}(s)$ and $\mathbf{t}'(s)$ are orthogonal, and hence $\mathbf{t}'(s)$ is parallel to the normal vector $\mathbf{n}(s)$ (which is also orthogonal to $\mathbf{t}(s)$). (Note that we use here the fact that we are in \mathbb{R}^2 , otherwise the last conclusion that $\mathbf{t}'(s)$ is parallel to $\mathbf{n}(s)$ is not true!)

Definition 3.2. The *(signed) curvature* $\kappa(s)$ of a plane curve $\alpha: I \longrightarrow \mathbb{R}^2$ is defined by $\mathbf{t}'(s) = \kappa(s)\mathbf{n}(s)$.

Remark. A way to compute: $\mathbf{n}(s) \cdot \mathbf{t}'(s) = \kappa(s)\mathbf{n}(s) \cdot \mathbf{n}(s) = \kappa(s)$ (since $\mathbf{n}(s)$ is a unit vector), so we have

$$\kappa(s) = \mathbf{n}(s) \cdot \mathbf{t}'(s)$$

If $\boldsymbol{\alpha}$ is given by $\boldsymbol{\alpha}(s) = (x(s), y(s))$, where s is the arc length, then

$$\kappa(s) = -y'(s)x''(s) + x'(s)y''(s),$$

provided the curve is parametrized by arc length.

Example 3.3. (a) Lines. $\kappa(s) \equiv 0$.

(b) Circles. $\kappa(s) \equiv 1/r$ for a circle of radius r.

Proposition 3.4. Let $\alpha \colon I \longrightarrow \mathbb{R}^2$, $\alpha(u) = (x(u), y(u))$, be a regular curve (not necessarily parametrized by arc length). Then

$$\kappa = \frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{3/2}},$$

where we omitted the argument u of the functions κ , x', x'', y' and y''.

Example. The ellipse. Let $\alpha \colon \mathbb{R} \longrightarrow \mathbb{R}^2$, $\alpha(u) = (a \cos u, b \sin u)$ for some constants a, b > 0. The curve is regular,

$$\kappa(u) = \frac{ab}{(a^2 \sin^2 u + b^2 \cos^2 u)^{3/2}}.$$

In particular, the curvature is always positive ($\kappa(u) > 0$ for all $u \in \mathbb{R}$), but not constant if $a \neq b$.

Definition 3.5. Let $\alpha \colon I \longrightarrow \mathbb{R}^2$ be a plane regular curve.

- (a) A point $\alpha(u_0)$ is an *inflection point* of α if $\kappa(u) = 0$.
- (b) A point $\alpha(u_0)$ is a vertex of α if $\kappa'(u) = 0$.

Remark. A vertex is well-defined, i.e. the definition does not depend on the parameter.

- **Example 3.6.** (a) The cubic. $\alpha(u) = (u, u^3)$. The only inflection point is $\alpha(0) = (0, 0)$, there are no vertices.
 - (b) The parabola. $\alpha(u) = (u, u^2)$. There are no inflection points, the only vertex is at u = 0.
 - (c) The ellipse. There are no inflection points, 4 vertices at $u = k\pi/2$.

Theorem 3.7 (The 4-vertex theorem). Any simple smooth regular closed curve has at least 4 vertices.

Here *simple* means the curve has no self-intersections.

Theorem 3.8 (The fundamental theorem of local theory of plane curves). Given a smooth function $\kappa: I \longrightarrow \mathbb{R}, s_0 \in I, a \in \mathbb{R}^2$ and a unit vector $v_0 \in \mathbb{R}^2$, there is a unique smooth regular curve $\alpha: I \longrightarrow \mathbb{R}^2$ parametrized by arc length with curvature $\kappa(s)$ and $\alpha(s_0) = a, \alpha'(s_0) = v_0$.

3.2 Evolute and involute of a plane curve

Definition 3.9. Let $\alpha: I \longrightarrow \mathbb{R}^2$ be a smooth regular curve parametrized by arc length.

(a) Suppose $\kappa(s) \neq 0$, then

$$\rho(s) = \frac{1}{|\kappa(s)|}$$

is called the *radius of curvature*. The point

$$\boldsymbol{e}(s) = \boldsymbol{\alpha}(s) + \frac{1}{\kappa(s)}\boldsymbol{n}(s)$$

is called the *center of curvature*. Here, \boldsymbol{n} is the unit normal of $\boldsymbol{\alpha}$.

(b) The *evolute (caustic)* of the curve α is the curve traced by the centers of curvature. Thus, a parametrization of the evolutive is

$$e: I \longrightarrow \mathbb{R}^2, \qquad e(s) = \alpha(s) + \frac{1}{\kappa(s)} n(s).$$

(c) The *involute* of a plane curve β is a curve whose evolute is the initial curve β .

Remark. Properties of the evolute.

 α , n and κ are smooth, so e is a smooth curve (whenever $\kappa(s) \neq 0$). Moreover,

$$\boldsymbol{e}'(s) = \boldsymbol{\alpha}'(s) + \frac{1}{\kappa(s)}\boldsymbol{n}'(s) - \frac{\kappa'(s)}{\kappa(s)^2}\boldsymbol{n}(s),$$

which implies

$$\boldsymbol{e}'(s) = -rac{\kappa'(s)}{\kappa(s)^2} \boldsymbol{n}(s).$$

In particular, we have the following conclutions:

- (a) e'(s) is *parallel* to the normal vector n(s) of the original curve α .
- (b) e'(s) = 0 iff $\kappa'(s) = 0$, i.e., the evolute is singular at $e(s_0)$ iff $\alpha(s_0)$ is a vertex.
- (c) The parameter s is not an arc length parameter of the evolute $e: ||e'(s)|| = |\frac{\kappa'(s)}{\kappa(s)^2}|$ which is not necessarily 1.

Example 3.10. (a) The ellipse. $\alpha(u) = (a \cos u, b \sin u)$ for a > 0, b > 0 and $a \neq b$.

$$e(u) = (a\cos u, b\sin u) + \frac{a^2\sin^2 u + b^2\cos^2 u}{ab}(-b\cos u, -a\sin u).$$

(b) The circle. e(u) = the center.