Differential Geometry III, Term 1 (Section 3)

3 Plane curves

3.1 Tangent and normal vectors. Curvature

Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{2}$ be a plane curve parametrized by arc length, i.e., $\boldsymbol{\alpha}^{\prime}(s)=\mathbf{t}(s)$ is a unit vector.
Definition 3.1. The unit normal vector $\mathbf{n}(s)$ is the vector obtained by rotating $\mathbf{t}(s)$ anticlockwise through $\pi / 2$.

In coordinates, if $\boldsymbol{\alpha}(s)=(x(s), y(s))$, then

$$
\mathbf{t}(s)=\left(x^{\prime}(s), y^{\prime}(s)\right), \quad \mathbf{n}(s)=\left(-y^{\prime}(s), x^{\prime}(s)\right)
$$

Remark. Differentiating the equation $1=\|\mathbf{t}(s)\|^{2}=\mathbf{t}(s) \cdot \mathbf{t}(s)$ gives

$$
0=\mathbf{t}^{\prime}(s) \cdot \mathbf{t}(s)+\mathbf{t}(s) \cdot \mathbf{t}^{\prime}(s)=2 \mathbf{t}^{\prime}(s) \cdot \mathbf{t}(s)
$$

In particular, $\mathbf{t}(s)$ and $\mathbf{t}^{\prime}(s)$ are orthogonal, and hence $\mathbf{t}^{\prime}(s)$ is parallel to the normal vector $\mathbf{n}(s)$ (which is also orthogonal to $\mathbf{t}(s)$). (Note that we use here the fact that we are in \mathbb{R}^{2}, otherwise the last conclusion that $\mathbf{t}^{\prime}(s)$ is parallel to $\mathbf{n}(s)$ is not true!)
Definition 3.2. The (signed) curvature $\kappa(s)$ of a plane curve $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{2}$ is defined by $\mathbf{t}^{\prime}(s)=\kappa(s) \mathbf{n}(s)$.
Remark. A way to compute: $\mathbf{n}(s) \cdot \mathbf{t}^{\prime}(s)=\kappa(s) \mathbf{n}(s) \cdot \mathbf{n}(s)=\kappa(s)$ (since $\mathbf{n}(s)$ is a unit vector), so we have

$$
\kappa(s)=\mathbf{n}(s) \cdot \mathbf{t}^{\prime}(s)
$$

If $\boldsymbol{\alpha}$ is given by $\boldsymbol{\alpha}(s)=(x(s), y(s))$, where s is the arc length, then

$$
\kappa(s)=-y^{\prime}(s) x^{\prime \prime}(s)+x^{\prime}(s) y^{\prime \prime}(s),
$$

provided the curve is parametrized by arc length.
Example 3.3. (a) Lines. $\kappa(s) \equiv 0$.
(b) Circles. $\kappa(s) \equiv 1 / r$ for a circle of radius r.

Proposition 3.4. Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{2}, \boldsymbol{\alpha}(u)=(x(u), y(u)$), be a regular curve (not necessarily parametrized by arc length). Then

$$
\kappa=\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}
$$

where we omitted the argument u of the functions $\kappa, x^{\prime}, x^{\prime \prime}, y^{\prime}$ and $y^{\prime \prime}$.
Example. The ellipse. Let $\boldsymbol{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}^{2}, \boldsymbol{\alpha}(u)=(a \cos u, b \sin u)$ for some constants $a, b>0$. The curve is regular,

$$
\kappa(u)=\frac{a b}{\left(a^{2} \sin ^{2} u+b^{2} \cos ^{2} u\right)^{3 / 2}}
$$

In particular, the curvature is always positive $(\kappa(u)>0$ for all $u \in \mathbb{R})$, but not constant if $a \neq b$.

Definition 3.5. Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{2}$ be a plane regular curve.
(a) A point $\boldsymbol{\alpha}\left(u_{0}\right)$ is an inflection point of $\boldsymbol{\alpha}$ if $\kappa(u)=0$.
(b) A point $\boldsymbol{\alpha}\left(u_{0}\right)$ is a vertex of $\boldsymbol{\alpha}$ if $\kappa^{\prime}(u)=0$.

Remark. A vertex is well-defined, i.e. the definition does not depend on the parameter.
Example 3.6. (a) The cubic. $\alpha(u)=\left(u, u^{3}\right)$. The only inflection point is $\boldsymbol{\alpha}(0)=(0,0)$, there are no vertices.
(b) The parabola. $\boldsymbol{\alpha}(u)=\left(u, u^{2}\right)$. There are no inflection points, the only vertex is at $u=0$.
(c) The ellipse. There are no inflection points, 4 vertices at $u=k \pi / 2$.

Theorem 3.7 (The 4-vertex theorem). Any simple smooth regular closed curve has at least 4 vertices.
Here simple means the curve has no self-intersections.
Theorem 3.8 (The fundamental theorem of local theory of plane curves). Given a smooth function $\kappa: I \longrightarrow \mathbb{R}, s_{0} \in I, a \in \mathbb{R}^{2}$ and a unit vector $v_{0} \in \mathbb{R}^{2}$, there is a unique smooth regular curve $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{2}$ parametrized by arc length with curvature $\kappa(s)$ and $\boldsymbol{\alpha}\left(s_{0}\right)=a, \boldsymbol{\alpha}^{\prime}\left(s_{0}\right)=v_{0}$.

3.2 Evolute and involute of a plane curve

Definition 3.9. Let $\alpha: I \longrightarrow \mathbb{R}^{2}$ be a smooth regular curve parametrized by arc length.
(a) Suppose $\kappa(s) \neq 0$, then

$$
\rho(s)=\frac{1}{|\kappa(s)|}
$$

is called the radius of curvature. The point

$$
\boldsymbol{e}(s)=\boldsymbol{\alpha}(s)+\frac{1}{\kappa(s)} \boldsymbol{n}(s)
$$

is called the center of curvature. Here, \boldsymbol{n} is the unit normal of $\boldsymbol{\alpha}$.
(b) The evolute (caustic) of the curve $\boldsymbol{\alpha}$ is the curve traced by the centers of curvature. Thus, a parametrization of the evolutive is

$$
\boldsymbol{e}: I \longrightarrow \mathbb{R}^{2}, \quad \boldsymbol{e}(s)=\boldsymbol{\alpha}(s)+\frac{1}{\kappa(s)} \boldsymbol{n}(s) .
$$

(c) The involute of a plane curve $\boldsymbol{\beta}$ is a curve whose evolute is the initial curve $\boldsymbol{\beta}$.

Remark. Properties of the evolute.

$\boldsymbol{\alpha}, \boldsymbol{n}$ and κ are smooth, so \boldsymbol{e} is a smooth curve (whenever $\kappa(s) \neq 0$). Moreover,

$$
\boldsymbol{e}^{\prime}(s)=\boldsymbol{\alpha}^{\prime}(s)+\frac{1}{\kappa(s)} \boldsymbol{n}^{\prime}(s)-\frac{\kappa^{\prime}(s)}{\kappa(s)^{2}} \boldsymbol{n}(s),
$$

which implies

$$
\boldsymbol{e}^{\prime}(s)=-\frac{\kappa^{\prime}(s)}{\kappa(s)^{2}} \boldsymbol{n}(s) .
$$

In particular, we have the following conclutions:
(a) $\boldsymbol{e}^{\prime}(s)$ is parallel to the normal vector $\boldsymbol{n}(s)$ of the original curve $\boldsymbol{\alpha}$.
(b) $\boldsymbol{e}^{\prime}(s)=\mathbf{0}$ iff $\kappa^{\prime}(s)=0$, i.e., the evolute is singular at $\boldsymbol{e}\left(s_{0}\right)$ iff $\boldsymbol{\alpha}\left(s_{0}\right)$ is a vertex.
(c) The parameter s is not an arc length parameter of the evolute $\boldsymbol{e}:\left\|\boldsymbol{e}^{\prime}(s)\right\|=\left|\frac{\kappa^{\prime}(s)}{\kappa(s)^{2}}\right|$ which is not necessarily 1.

Example 3.10. (a) The ellipse. $\boldsymbol{\alpha}(u)=(a \cos u, b \sin u)$ for $a>0, b>0$ and $a \neq b$.

$$
\boldsymbol{e}(u)=(a \cos u, b \sin u)+\frac{a^{2} \sin ^{2} u+b^{2} \cos ^{2} u}{a b}(-b \cos u,-a \sin u) .
$$

(b) The circle. $\boldsymbol{e}(u)=$ the center.

