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Differential Geometry III, Term 1 (Section 7)

7 Tangent plane, first fundamental form and area

7.1 The tangent plane

Definition 7.1. Let S be a regular surface and p € S. A tangent vector to S at p is the tangent vector
a’(0) € R? of a smooth (not necessarily regular) curve a: (—¢,¢) — S C R? with a(0) = p (for some
e >0).

Let &: U — S be a local parametrization of S, ¢ € U, x(q) = p. Recall that the differential (or
derivative) dgqz is a linear map dqx : R? — R3. By the definition of a regular surface, dg has full rank
at every point, so the dimension of the image is equal to 2.

Definition 7.2. The plane d,z(R?) is called the tangent plane to S at p and is denoted by T,S.

Proposition 7.3. Let z: U — S be a local parametrization of a regular surface S with U C R? open,
and let g € U. Then Then the tangent plane 7,,S coincides with the set of all tangent vectors to S at p.

Remark 7.4. (a) Since the definition of a tangent vector does not depend on a parametrization,
Prop. 7.3 implies that the tangent plane does not depend on a parametrization either.

(b) If a(s) = x(u(s),v(s)) and w = &'(0), then w has coordinates (u'(0),v’(0)) with respect to the
basis {z,(q), x,(q)}

Example 7.5.

(a) Tangent plane to graph of a function: Let g: U — R be a smooth function on an open subset
U of R?, i.e.
§ = graph g = { (u,,g(u,0)) | (u,v) € U }

is a regular surface with parametrisation x(u,v) := (u,v, g(u,v)). Then the tangent plane T,,S to
S at p = (u,v,g(u,v)) is generated by

{zu(q), 20(@)} = {(1,0, gu(u,)), (0,1, gu(u, v))},

where g = (u,v).

(b) Tangent plane to a level set of a function: Let f: R®> — R be a smooth function, and let
c € R be a regular value of f (i.e., Vf(p) # 0 for all p € R3 with f(p) = ¢). We have seen that
:= f~Y(c) is a regular surface.

Lemma 7.6. Let p € S, then T,,S is the plane in R® orthogonal to V f(p).



7.2 The first fundamental form

Let p € S. We can consider the restriction of the inner product (-): R? x R?® — R, (v, w) — v - w, to
TpS C R3. We denote the restriction by (-, Vp, 1€,

(-, )p: TpS x TpS — R, (w1, ws) — wi - wa.
This map is
e bilinear, i.e, linear in both of its arguments;
o symmetric, i.e., (w2, w1)p = (w1, wa)p for all wi,wy € Tp,S;
e and positive, i.e., Hw||12, = (w,w) >0 and ||w||12, = 0 implies w = 0 for all w € T}, S.

We can now measure the length of a tangent vector w € TS and the angle between two tangent vectors
w1, Wy € TpS by
<w17 w2>P

\/<w17 w1>P\/<w27 w2>p .

A quadratic form I, is obtained from a bilinear form (-, -),, by setting Ip(w) = (w, w)p.

(w, w)p and cost =

Definition 7.7. The quadratic form Ip: TpS — R, I,(w) = (w,w)p, = ||lw||? is called the first
fundamental form at p € S.

Definition 7.8. The functions E, F,G: U — R defined by
E:=(xy,xy)p, F:=(xy, xy)p, G:=(Ty,Ty)p
are called the coefficients of the first fundamental form in the local parametrization x: U — S.

Note that the coefficients of the first fundamental form depend on the parametrisation !

Remark 7.9. If (a,b) € R? are the coordinates of a vector w € T}, S with respect to the basis {z,(q), z,(q)},
then

Iy(w) = a®E + 2abF + b*G = (a b) - (? g) : (‘;)

Since I, is positive (Ip(w) = ||w||? > 0 and I,(w) = 0 implies w = 0), we have

E F

E>0, G>0 and det<F .

>:EGF2>O.

Example 7.10. Let S be a plane in R? given by an equation ax + by + cz + d = 0, and assume without
loos of generality that ¢ # 0. Then

wz(:c,y) = (1,0,—@/0) and wy(%?/) = (Oalv_b/c)
In particular, we have

a® ab b2



Example 7.11. Coefficients of the first fundamental form for a graph of a function: Let
a surface be given by a graph of a function g, namely x(u,v) := (u,v,g(u,v)) = (u,v,u?® + v?) for
(u,v) € U := R% Then

xy(u,v) = (1,0, g,) = (1,0, 2u) and xy(u,v) = (0,1, 9,) = (0,1, 2v).

In particular, we have

E=(1,0,9.)-(1,0,9,) = 1+ ¢2, here  E(u,v) = 14 4u?,
F=(1,0,9u) - (0,1, 90) = gugv, here F(u,v) = 8uw,
G=(0,1,90)(0,1,90) =1+ g; here  G(u,v) = 1+ 4v?,

Example 7.12. Coefficients of the first fundamental form for a surface of revolution: Let S be
obtained by rotating the space curve given by a(v) = (f(v),0,g9(v)), v € R, around the z-axis (without
self-intersections and without meeting the z-axis, i.e., f(v) = 0). A parametrization is then given by

x(u,v) = (f(v)cosu, f(v)sinu, g(v))
(u,v) € (—m, ) x R. Here, we have
xy(u,v) = (= f(v) sinu, f(v) cosu,0) and x,(u,v) = (f (v)cosu, f'(v)sinu, g'(v)).
The coefficients of the first fundamental form in this parametrization are

E(u,v) = f(v)*, F(u,v) =0 and G(u,v) = [f' ()" +|g'(0)* = [/ (v)]*.

7.3 Arc lengths of a curve and angles between curves in a surface

The aim of the following remark is to calculate the arc length of a curve in a surface using only the
coefficients of the first fundamental form.

Definition 7.13. Let a: I — S be a curve on a regular surface S. Then the length of a, measured
from a point a(ug) for some uy € I, is

l(u) = ’ ((s),(5))a(s) ds.
I

Proposition 7.14 (evident).

u
£(w) = [ o (e ()2 s
uo
Remark 7.15. Let a: I — S be a curve on a regular surface S and «: U — S a local parametrization
such that a(I) C x(U). Denote by 8 = (u,v) the corresponding curve in the parameter domain (i.e.,
als) = (B(s)) = @(u(s), o(s))).

Let E, F,G be the coefficients of the first fundamental form w.r.t. the parametrization . Then the
arc lengths of ax from sy € I to s1 € I can be expressed in terms of E, F, G only as follows:

o) = [ ool @) 2t = [ aTOPEB0) + 2000 O F B0) + /OGO .

S0



Example 7.16. The hyperbolic plane. We construct a surface by fixing the coefficients of the first
fundamental form E, F,G only. Actually, this is the first example which cannot (in total) be realized as
a surface in R3.

Let U := { (u,v) € R?|v > 0} be the upper halfplane and set

1
F(u,v):==0 and G(u,v):=—

1
E(u,v) == — 5

2 )
v v
ie, F=0and F =G.
Let us now assume that there is a surface S in an ambient space R™ and a parametrization : U — S
such that the corresponding coefficients of the fundamental form have the desired form.

Consider a curve ac: (0,00) — S given by a(s) = x(0, s). In the coordinates on U, the curve has the
form B: (0,00) — U, B(s) = (0,s). Then

1
led(5)* = 0E(0,5) + 0 +1G(0,5) = )

Therefore, the arc length of a from a(a) to a(b) on S is

b bl b
/ &/ (s)]| ds :/ —ds =logb—loga =log —.
a 0 S a

The upper half-plane U = R x (0, 00) together with the first fundamental form above is called the upper
half-plane model of the hyperbolic plane. The corresponding surface S, the hyperbolic plane, is sometimes
denoted by H.

Remark. Coordinate curves and angle. Let x: U — S be a parametrization of a regular surface
S C R™, (up,vg) € U. Consider the curves

a1(s) = x(up + s,vg) and as(s) = x(ug, vy + )

with s being small. These curves are called the coordinate curves of the parametrization . The angle
formed by the two curves meeting in (ug, vg) can be calculated by

@ (0) - a5(0)
I (0) 1l (0) 1

But o} (0) = @, (up, vo) and a)(0) = @, (ug, vo), so that (omitting the argument (ug, vo))

cost =

Ty - Ty F

lzullllzoll — VEG

cosV =

7.4 Area of subsets of a surface

Definition 7.17. Let Ry C U, R = &(Ry) C S. The area of a region R = x(Ry) is defined as
area(R) := / VEG — F2dudv.
Ro

Example 7.18. Let S be a half of a cylinder parametrized by

x(u,v) = (u,v, V1 —02), (u,v) €U = (—1,1) x (—1,1)
Then E=1, F=0,G=1/(1 —v?), s0

area(S):/U\/mdudv:/_ll du/_ll\/mdv:2w

4



The definition of area depends at first sight on the local parametrization : U — S. Actually, it
does not:

Proposition 7.19. Assume that we have two local parametrizations x1: Uy — S and xo: Uy — S
with @1 (Uy) = x2(Usz) =: W. Denote by E1, F1, Gy and Es, F5, G2 the coefficients of the first fundamental
form in the parametrisation 1 and a2, respectively.

Let R C W. Denote by Ry := mfl(R) and Ry := azgl(R) the corresponding regions in the respective
parameter domains. Then

/ v E1Gy — F12 duq dvy = / \/ EoGo — F22 dus dws.
Rl RQ

Example 7.20.
(a) The sphere. Let S be the sphere of radius r > 0 in R3,
x(u,v) = (rcosusinv, rsinusin v, r cosv)
(v measures latitude, u measures longitude, and (u,v) are called spherical coordinates). We have
E(u,v) =r?sin®v, F(u,v) =0 and G(u,v)=r?

so that EG — F? = r4sin?v.

Let us compute the area of a “slice” of the sphere enclosed by planes z = zp and z = z;, where
—r < z1 < zg < r. This corresponds to the domain arccos zp < v < arccos z1,u € (0,27). Therefore

the area is
27 arccos zi
/ du/ r?sin v dv = 21r%(29 — 21).
0 a,

I'CCos 2Q

(b) Torus of revolution: Consider the parametrization

x: U :=(0,2m) x (0,2m) — S,

x(u,v) := ((R+rcosv)cosu, (R+ rcosv)sinu, rsinv)
for 0 < r < R. This surface is a surface of revolution, obtained by rotating the curve a given by
a(v) = ((R+rcosv),0,rsinv)

(which is a circle of radius r in the (x, z)-plane centered at the point (R,0,0)) around the z-axis.

Then

@, (u,v) = (—(R+rcosv)sinu, (R + rcosv) cosu,0),

@, (u,v) = (—rsinvcosu, —rsinvsinu, rcosv)

and therefore
E(u,v) = (R+7rcosv)?, F(u,v)=0 and G(u,v) =12

In particular, VEG — F? = (R + r cosv)r, hence

2r 27
area(S) = / / (R + rcosv)rdudv = 472rR.
o Jo



(¢) Hyperbolic plane: Recall that we have the parameter domain U := R x (0, c0) together with the
coefficients of the fundamental form

E(u,v) = G(u,v) = 1 F(u,v) =0,

v2’

and VEG — F(u,v) = 1/v% Let R,y := (0,b) x (a,2a), then the corresponding region in the
hyperbolic plane H has area

1 b 2a 1
area(R) = / — dudv = / du/ — dv =b/2a.
Rap v 0 a U

In particular, if b = a, we obtain 1/2 which does not depend on a.



