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Differential Geometry III, Term 2 (Section 11)

11 Curves on surfaces

11.1 Coordinate curves

Definition 11.1. Let S be a regular surface in Rn. A curve on the surface S is a smooth map α : I −→ S
(I ⊂ R is an interval).

Remark 11.2. Recall: If x : U −→ S is a local parametrisation (U ⊂ R2 open) and α : I −→ x(U) a
curve in x(U) ⊂ U , then we can write

α(s) = x(u(s), v(s)),

and
α′ = u′xu + v′xv,

which implies
‖α′(t)‖ =

√
E(u(t), v(t))u′(t)2 + 2F (u(t), v(t))u′(t)v′(t) + . . .

Example 11.3. Coordinate curves: Let x : U −→ S be a local parametrization (U ⊂ R2 open) and
(u0, v0) ∈ U , then

u 7→ x(u, v0)

v 7→ x(u0, v)

are called coordinate curves through p = x(u0, v0). The local parametrization is given by (u(s), v(s)) =
(s, v0) for the first, and (u(s), v(s)) = (u0, s) for the second.

One should note that coordinate curves are not intrinsic, they depend on the parametrization.

11.2 Geodesic and normal curvature

Assume now that S ⊂ R3, α : I −→ S ⊂ R3 is a unit speed curve. Then α′(s) and α′′(s) are orthogonal,
and

‖α′′(s)‖ = κ(s),

where κ(s) denotes the curvature of α as a space curve.
Denote by N(α(s)) the Gauss map of the surface S at α(s). Since α′′ is orthonormal to α′, it lies in

the plane spanned by N and N ×α′.

Definition 11.4 (Geodesic and normal curvature). If α : I −→ S is a curve on a surface S (with Gauss
map N) parametrized by arc lenth, then we can write

α′′(s) = κg(s)N(α(s)) ×α′(s) + κn(s)N(α(s)).

We call κg : I −→ R the geodesic curvature and κn : I −→ R the normal curvature of α in S.
For a curve with an arbitrary parametrization on S the geodesic and normal curvatures are defined to

be the same as for its unit speed reparametrization, i.e. if β : J → S is a curve, α : I → S is a unit speed
curve, and β(t(s)) = α(s), then κβ,n(t(s)) = κα,n(s), and κβ,g(t(s)) = κα,g(s). In other words, normal
and geodesic curvatures are invariant under reparametrizations by definition.
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Remark 11.5. We have (if α is parametrized by arc length!)

κn = α′′ ·N and κg = α′′ · (N ×α′)

Furthermore, recall that the curvature κ of a space curve is given by κ = ‖α′′‖ (if α is parametrized by
arc length), and since N and N ×α′ form an orthonormal system, we have by Pythagoras’ Theorem

κ = ‖α′′‖ =
√
κ2g + κ2n

Example 11.6. (a) (Plane).

S = { (u, v, 0) | (u, v) ∈ R2 }, then N = (0, 0, 1).

Let α : I −→ S, α(s) = (u(s), v(s), 0), parametrized by arclength; then α′ = (u′, v′, 0), n× α′ =
(−v′, u′, 0) so that

α′′ = (u′′, v′′, 0) = κg(N ×α′) + κnN = κg(−v′, u′, 0) + κn(0, 0, 1)

so that κn = 0, and, if κ is the curvature of α, κ = κg (if α is considered as a plane curve) or
κ = |κg| (if α is considered as a space curve).

(b) (Lines on surfaces).

Assume that α(s) = p + sv, ‖v‖ = 1, parametrizes a line (s ∈ I ⊂ R) and that α(s) ∈ S for all
s ∈ I for some surface S ⊂ R3. Then

α′ = v, α′′ = (0, 0, 0),

so that κg = 0 and κn = 0, i.e., the geodesic and normal curvature of a line on a surface both vanish.

Theorem 11.7 (Meusnier). All curves β through p ∈ S with the same tangent vector w ∈ TpS have the
same normal curvature

κn(s) = IIp

( w

‖w‖

)
.

In particular, the value κn(w) is well defined for any w ∈ TpS.

Corollary. Let p ∈ S, w ∈ TpS, and let Π be the plane through p spanned by N(p) and w. Then
κn(w) = κ(Π ∩ S), where Π ∩ S is considered as a plane curve with tangent vector w at p.

Proposition 11.8. (Normal curvature in a local parametrization)
Let S be a surface in R3, and let E,F,G and L,M,N be the coefficient of the first and second

fundamental forms respectively w.r.t. a parametrization x. Further, let α be a curve in S (not necessarily
parametrized by arc length) with local parametrization α(s) = x(u(s), v(s)). Then

κn = IIp

(
α′

‖α′‖

)
=

(u′)2L+ 2u′v′M + (v′)2N

(u′)2E + 2u′v′F + (v′)2G
=
IIp(α

′)

Ip(α′)

Proposition 11.9. Let β : I −→ S be a curve not necessarily parametrized by arc length, and let N be
the Gauss map of S. Then the geodesic curvature of β can be calculated as

κg =
1

‖β′‖3
(β′× β′′) ·N .

Definition 11.10. (Asymptotic curves) A curve α on a surface S ⊂ R3 is called an asymptotic curve if
its normal curvature vanishes identically (i.e., if κn = 0).
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Remark 11.11. (i) The following are equivalent (TFAE):

(a) α is an asymptotic curve;

(b) α′′ · (N ◦α) = 0 (if N is the Gauss map of S and α is parametrized by arc length);

(c) κn = 0;

(d) IIα(s)(α
′(s)) = 0 for all s (α not necessarily parametrized by arc length);

(e) (u′)2L+ 2u′v′M + (v′)2N = 0 in a local parametrization s 7→ x(u(s), v(s)) of α.

In particular, IIp is not positive or negative definite along α, so α has to be in the hyperbolic or flat
region of the surface.

(ii) κn(w) = 0 for w ∈ TpS implies K(p) ≤ 0.

(iii) If α is a line on S, then κn = 0, i.e., any line on a surface is an asymptotic curve.

Example 11.12. (Asymptotic curves on a surface of revolution/catenoid)
Recall that on a surface of revolution obtained by rotating a curve α given by α(v) = (f(v), 0, g(v))

around the z-axis, we have

L =
−fg′

‖α′‖
, M = 0, N =

f ′′g′ − f ′g′′

‖α′‖
(see Example 9.13). A curve β parametrized locally by β(t) = x(u(t), v(t)) is an asymptotic curve iff
(u′)2L+ 2u′v′M + (v′)2N = 0, i.e., iff

(u′)2fg′ = (v′)2(f ′′g′ − f ′g′′)

If in particular, f(v) = cosh v and g(v) = v (i.e., the surface of revolution is a catenoid), then the above
equation becomes

(u′)2 cosh v = (v′)2 cosh v, or, u′ = ±v′, i.e., u = ±v + c

for some constant c ∈ R.

11.3 Lines of curvature

Definition 11.13. (Lines of curvature)
A curve α : I −→ S on a surface S in R3 is called a line of curvature if α′(s) is a principal direction

at α(s) for all s ∈ I, i.e., α′(s) is an eigenvector of the Weingarten map at α(s) for all s.
Equivalently, α is a line of curvature if there is a function λ : I −→ R such that

−dNα(s)(α
′(s)) = λ(s)α′(s)

for all s ∈ I. (Here λ(s) is a principal curvature at α(s).)

Remark 11.14. Note that if the eigenvalues of a symmetric 2 × 2-matrix are different, then the corre-
sponding eigenvectors are orthogonal. Hence, each non-umbilic point (κ1(p) 6= κ2(p)) has two lines of
curvature through it, and they intersect orthogonally. In an umbilic point, this family of orthogonally
intersecting curves has a singularity.

Moreover any direction at an umbilic point is principal. In particular, on a sphere (κ1 = κ2 > 0) or a
plane (κ1 = κ2 = 0) any curve is a line of curvature.
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Proposition 11.15. (Lines of curvature in a local parametrisation) Let E,F,G and L,M,N be the
coefficients of the first and second fundamental forms respectively w.r.t. a local parametrization x : U −→
S, and let α be a curve in S with local parametrization α(s) = x(u(s), v(s)). Then α is a line of curvature
if and only if

det

(v′)2 −u′v′ (u′)2

E F G
L M N

 = 0

or, equivalently,
(FN −GM)(v′)2 + (EN −GL)u′v′ + (EM − FL)(u′)2 = 0.

Example 11.16. (Hyperbolic paraboloid)
Let S = { (x, y, z) |xy = z } be a hyperbolic paraboloid parametrized by x(u, v) = (u, v, uv). Then

xu = (1, 0, v), xv = (0, 1, u), N = D−1(−v,−u, 1), D = (u2 + v2 + 1)1/2

xuu = (0, 0, 0), xuv = (0, 0, 1), xvv = (0, 0, 0)

and

E = xu · xu = 1 + v2, F = xu · xv = uv, G = xv · xv = 1 + u2,

L = xuu ·N = 0, M = xuv ·N = 1/D, N = xvv ·N = 0

Therefore, α with α(s) = x(u(s), v(s)) is a line of curvature iff

det

 (v′)2 −u′v′ (u′)2

1 + v2 uv 1 + u2

0 1/D 0

 = (u′)2(1 + v2)/D − (v′)2(1 + u2)/D = 0,

which is equivalent to
u′

(1 + u2)1/2
= ± v′

(1 + v2)1/2
,

and after integrating,
arcsinhu = ±arcsinh v + c

for some constant c ∈ R. For example, if c = 0, then u = ±v, or s 7→ x(s,±s) = (s,±s,±s2) are the lines
of curvature through p = (0, 0, 0).

The asymptotic curves here are given by

(u′)2L+ 2u′v′M + (v′)2M = 2u′v′/D = 0,

i.e., u′ = 0 or v′ = 0, so the asymptotic curves are the coordinate curves s 7→ x(s, v0) or s 7→ x(u0, s)

Remark 11.17. (a) On a line of curvature, the normal curvature is a principal curvature.

Indeed, since α is a line of curvature, we have −dα(s)N(α′(s)) = λ(s)α′(s), and λ(s) is a principal
curvature at α(s).

On the other hand,

κn(s) =
IIα(s)(α

′(s))

Iα(s)(α′(s)
=
〈−dα(s)N(α′(s)),α′(s)〉

〈α′(s),α′(s)〉
=
〈λ(s)α′(s),α′(s)〉
〈α′(s),α′(s)〉

= λ(s)
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(b) Assume that a line α (or a part of it) belongs to a surface. When is this line a line of curvature?

On a line, the normal curvature is 0, hence by the first part, one of its principal curvatures, say κ1,
has to vanish on α. But this means that the Gauss curvature (as the product of the two principal
curvatures K = κ1κ2) has to vanish (and vice versa). Hence if α : I −→ S is a line in S, then

α is a line of curvature ⇔
(
K(α(s)) = 0 ∀s ∈ I

)
.

This is equivalent to LN −M2 = 0.

Proposition 11.18. (Lines of curvature for a principal parametrization)
If x is a principal parametrization of a surface S ⊂ R3 (i.e., F = 0 and M = 0), then the coordinate

curves are lines of curvature.

Example 11.19. (Lines of curvature for a surface of revolution)
On a surface of revolution, the coordinate curves of the standard parametrization given by x(u, v) =

(f(v) cosu, f(v) sinu, g(v)) are also lines of curvature.

Remark 11.20. Note that the converse of Proposition 11.18 is also true in the following sense: if
a parametrization x is principal and the umbilic points are isolated, then the lines of curvature are
coordinate curves.
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