Differential Geometry III, Term 2 (Section 11)

11 Curves on surfaces

11.1 Coordinate curves

Definition 11.1. Let S be a regular surface in \mathbb{R}^{n}. A curve on the surface S is a smooth map $\boldsymbol{\alpha}: I \longrightarrow S$ $(I \subset \mathbb{R}$ is an interval).
Remark 11.2. Recall: If $\boldsymbol{x}: U \longrightarrow S$ is a local parametrisation $\left(U \subset \mathbb{R}^{2}\right.$ open) and $\boldsymbol{\alpha}: I \longrightarrow \boldsymbol{x}(U)$ a curve in $\boldsymbol{x}(U) \subset U$, then we can write

$$
\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s)),
$$

and

$$
\boldsymbol{\alpha}^{\prime}=u^{\prime} \boldsymbol{x}_{u}+v^{\prime} \boldsymbol{x}_{v}
$$

which implies

$$
\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|=\sqrt{E(u(t), v(t)) u^{\prime}(t)^{2}+2 F(u(t), v(t)) u^{\prime}(t) v^{\prime}(t)+\ldots}
$$

Example 11.3. Coordinate curves: Let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization ($U \subset \mathbb{R}^{2}$ open) and $\left(u_{0}, v_{0}\right) \in U$, then

$$
\begin{aligned}
u & \mapsto \boldsymbol{x}\left(u, v_{0}\right) \\
v & \mapsto \boldsymbol{x}\left(u_{0}, v\right)
\end{aligned}
$$

are called coordinate curves through $p=\boldsymbol{x}\left(u_{0}, v_{0}\right)$. The local parametrization is given by $(u(s), v(s))=$ $\left(s, v_{0}\right)$ for the first, and $(u(s), v(s))=\left(u_{0}, s\right)$ for the second.

One should note that coordinate curves are not intrinsic, they depend on the parametrization.

11.2 Geodesic and normal curvature

Assume now that $S \subset \mathbb{R}^{3}, \boldsymbol{\alpha}: I \longrightarrow S \subset \mathbb{R}^{3}$ is a unit speed curve. Then $\boldsymbol{\alpha}^{\prime}(s)$ and $\boldsymbol{\alpha}^{\prime \prime}(s)$ are orthogonal, and

$$
\left\|\boldsymbol{\alpha}^{\prime \prime}(s)\right\|=\kappa(s)
$$

where $\kappa(s)$ denotes the curvature of $\boldsymbol{\alpha}$ as a space curve.
Denote by $\boldsymbol{N}(\boldsymbol{\alpha}(s))$ the Gauss map of the surface S at $\boldsymbol{\alpha}(s)$. Since $\boldsymbol{\alpha}^{\prime \prime}$ is orthonormal to $\boldsymbol{\alpha}^{\prime}$, it lies in the plane spanned by \boldsymbol{N} and $\boldsymbol{N} \times \boldsymbol{\alpha}^{\prime}$.
Definition 11.4 (Geodesic and normal curvature). If $\alpha: I \longrightarrow S$ is a curve on a surface S (with Gauss $\operatorname{map} \boldsymbol{N})$ parametrized by arc lenth, then we can write

$$
\boldsymbol{\alpha}^{\prime \prime}(s)=\kappa_{\mathrm{g}}(s) \boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \boldsymbol{\alpha}^{\prime}(s)+\kappa_{\mathrm{n}}(s) \boldsymbol{N}(\boldsymbol{\alpha}(s))
$$

We call $\kappa_{\mathrm{g}}: I \longrightarrow \mathbb{R}$ the geodesic curvature and $\kappa_{\mathrm{n}}: I \longrightarrow \mathbb{R}$ the normal curvature of $\boldsymbol{\alpha}$ in S.
For a curve with an arbitrary parametrization on S the geodesic and normal curvatures are defined to be the same as for its unit speed reparametrization, i.e. if $\boldsymbol{\beta}: J \rightarrow S$ is a curve, $\boldsymbol{\alpha}: I \rightarrow S$ is a unit speed curve, and $\boldsymbol{\beta}(t(s))=\boldsymbol{\alpha}(s)$, then $\kappa_{\boldsymbol{\beta}, \mathrm{n}}(t(s))=\kappa_{\boldsymbol{\alpha}, \mathrm{n}}(s)$, and $\kappa_{\boldsymbol{\beta}, \mathrm{g}}(t(s))=\kappa_{\boldsymbol{\alpha}, \mathrm{g}}(s)$. In other words, normal and geodesic curvatures are invariant under reparametrizations by definition.

Remark 11.5. We have (if $\boldsymbol{\alpha}$ is parametrized by arc length!)

$$
\kappa_{\mathrm{n}}=\boldsymbol{\alpha}^{\prime \prime} \cdot \boldsymbol{N} \quad \text { and } \quad \kappa_{\mathrm{g}}=\boldsymbol{\alpha}^{\prime \prime} \cdot\left(\boldsymbol{N} \times \boldsymbol{\alpha}^{\prime}\right)
$$

Furthermore, recall that the curvature κ of a space curve is given by $\kappa=\left\|\boldsymbol{\alpha}^{\prime \prime}\right\|$ (if $\boldsymbol{\alpha}$ is parametrized by arc length), and since \boldsymbol{N} and $\boldsymbol{N} \times \boldsymbol{\alpha}^{\prime}$ form an orthonormal system, we have by Pythagoras' Theorem

$$
\kappa=\left\|\boldsymbol{\alpha}^{\prime \prime}\right\|=\sqrt{\kappa_{\mathrm{g}}^{2}+\kappa_{\mathrm{n}}^{2}}
$$

Example 11.6. (a) (Plane).
$S=\left\{(u, v, 0) \mid(u, v) \in \mathbb{R}^{2}\right\}$, then $\boldsymbol{N}=(0,0,1)$.
Let $\boldsymbol{\alpha}: I \longrightarrow S, \boldsymbol{\alpha}(s)=(u(s), v(s), 0)$, parametrized by arclength; then $\boldsymbol{\alpha}^{\prime}=\left(u^{\prime}, v^{\prime}, 0\right), \boldsymbol{n} \times \boldsymbol{\alpha}^{\prime}=$ $\left(-v^{\prime}, u^{\prime}, 0\right)$ so that

$$
\boldsymbol{\alpha}^{\prime \prime}=\left(u^{\prime \prime}, v^{\prime \prime}, 0\right)=\kappa_{\mathrm{g}}\left(\boldsymbol{N} \times \boldsymbol{\alpha}^{\prime}\right)+\kappa_{\mathrm{n}} \boldsymbol{N}=\kappa_{\mathrm{g}}\left(-v^{\prime}, u^{\prime}, 0\right)+\kappa_{\mathrm{n}}(0,0,1)
$$

so that $\kappa_{\mathrm{n}}=0$, and, if κ is the curvature of $\boldsymbol{\alpha}, \kappa=\kappa_{\mathrm{g}}$ (if $\boldsymbol{\alpha}$ is considered as a plane curve) or $\kappa=\left|\kappa_{\mathrm{g}}\right|$ (if $\boldsymbol{\alpha}$ is considered as a space curve).
(b) (Lines on surfaces).

Assume that $\boldsymbol{\alpha}(s)=p+s \boldsymbol{v},\|v\|=1$, parametrizes a line $(s \in I \subset \mathbb{R})$ and that $\boldsymbol{\alpha}(s) \in S$ for all $s \in I$ for some surface $S \subset \mathbb{R}^{3}$. Then

$$
\boldsymbol{\alpha}^{\prime}=\boldsymbol{v}, \quad \boldsymbol{\alpha}^{\prime \prime}=(0,0,0)
$$

so that $\kappa_{\mathrm{g}}=0$ and $\kappa_{\mathrm{n}}=0$, i.e., the geodesic and normal curvature of a line on a surface both vanish.
Theorem 11.7 (Meusnier). All curves $\boldsymbol{\beta}$ through $p \in S$ with the same tangent vector $\boldsymbol{w} \in T_{p} S$ have the same normal curvature

$$
\kappa_{\mathrm{n}}(s)=I I_{p}\left(\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\right) .
$$

In particular, the value $\kappa_{\mathrm{n}}(\boldsymbol{w})$ is well defined for any $\boldsymbol{w} \in T_{p} S$.
Corollary. Let $p \in S, \boldsymbol{w} \in T_{p} S$, and let Π be the plane through p spanned by $\boldsymbol{N}(p)$ and \boldsymbol{w}. Then $\kappa_{\mathrm{n}}(\boldsymbol{w})=\kappa(\Pi \cap S)$, where $\Pi \cap S$ is considered as a plane curve with tangent vector \boldsymbol{w} at p.

Proposition 11.8. (Normal curvature in a local parametrization)
Let S be a surface in \mathbb{R}^{3}, and let E, F, G and L, M, N be the coefficient of the first and second fundamental forms respectively w.r.t. a parametrization \boldsymbol{x}. Further, let $\boldsymbol{\alpha}$ be a curve in S (not necessarily parametrized by arc length) with local parametrization $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$. Then

$$
\kappa_{\mathrm{n}}=I I_{p}\left(\frac{\boldsymbol{\alpha}^{\prime}}{\left\|\boldsymbol{\alpha}^{\prime}\right\|}\right)=\frac{\left(u^{\prime}\right)^{2} L+2 u^{\prime} v^{\prime} M+\left(v^{\prime}\right)^{2} N}{\left(u^{\prime}\right)^{2} E+2 u^{\prime} v^{\prime} F+\left(v^{\prime}\right)^{2} G}=\frac{I I_{p}\left(\boldsymbol{\alpha}^{\prime}\right)}{I_{p}\left(\boldsymbol{\alpha}^{\prime}\right)}
$$

Proposition 11.9. Let $\boldsymbol{\beta}: I \longrightarrow S$ be a curve not necessarily parametrized by arc length, and let \boldsymbol{N} be the Gauss map of S. Then the geodesic curvature of $\boldsymbol{\beta}$ can be calculated as

$$
\kappa_{\mathrm{g}}=\frac{1}{\left\|\boldsymbol{\beta}^{\prime}\right\|^{3}}\left(\boldsymbol{\beta}^{\prime} \times \boldsymbol{\beta}^{\prime \prime}\right) \cdot \boldsymbol{N}
$$

Definition 11.10. (Asymptotic curves) A curve $\boldsymbol{\alpha}$ on a surface $S \subset \mathbb{R}^{3}$ is called an asymptotic curve if its normal curvature vanishes identically (i.e., if $\kappa_{\mathrm{n}}=0$).

Remark 11.11. (i) The following are equivalent (TFAE):
(a) $\boldsymbol{\alpha}$ is an asymptotic curve;
(b) $\boldsymbol{\alpha}^{\prime \prime} \cdot(\boldsymbol{N} \circ \boldsymbol{\alpha})=0$ (if \boldsymbol{N} is the Gauss map of S and $\boldsymbol{\alpha}$ is parametrized by arc length);
(c) $\kappa_{\mathrm{n}}=0$;
(d) $I_{\boldsymbol{\alpha}(s)}\left(\boldsymbol{\alpha}^{\prime}(s)\right)=0$ for all s ($\boldsymbol{\alpha}$ not necessarily parametrized by arc length);
(e) $\left(u^{\prime}\right)^{2} L+2 u^{\prime} v^{\prime} M+\left(v^{\prime}\right)^{2} N=0$ in a local parametrization $s \mapsto \boldsymbol{x}(u(s), v(s))$ of $\boldsymbol{\alpha}$.

In particular, $I I_{p}$ is not positive or negative definite along $\boldsymbol{\alpha}$, so $\boldsymbol{\alpha}$ has to be in the hyperbolic or flat region of the surface.
(ii) $\kappa_{\mathrm{n}}(\boldsymbol{w})=0$ for $\boldsymbol{w} \in T_{p} S$ implies $K(p) \leq 0$.
(iii) If $\boldsymbol{\alpha}$ is a line on S, then $\kappa_{\mathrm{n}}=0$, i.e., any line on a surface is an asymptotic curve.

Example 11.12. (Asymptotic curves on a surface of revolution/catenoid)
Recall that on a surface of revolution obtained by rotating a curve $\boldsymbol{\alpha}$ given by $\boldsymbol{\alpha}(v)=(f(v), 0, g(v))$ around the z-axis, we have

$$
L=\frac{-f g^{\prime}}{\left\|\boldsymbol{\alpha}^{\prime}\right\|}, \quad M=0, \quad N=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\left\|\boldsymbol{\alpha}^{\prime}\right\|}
$$

(see Example 9.13). A curve $\boldsymbol{\beta}$ parametrized locally by $\boldsymbol{\beta}(t)=\boldsymbol{x}(u(t), v(t))$ is an asymptotic curve iff $\left(u^{\prime}\right)^{2} L+2 u^{\prime} v^{\prime} M+\left(v^{\prime}\right)^{2} N=0$, i.e., iff

$$
\left(u^{\prime}\right)^{2} f g^{\prime}=\left(v^{\prime}\right)^{2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)
$$

If in particular, $f(v)=\cosh v$ and $g(v)=v$ (i.e., the surface of revolution is a catenoid), then the above equation becomes

$$
\left(u^{\prime}\right)^{2} \cosh v=\left(v^{\prime}\right)^{2} \cosh v, \quad \text { or, } \quad u^{\prime}= \pm v^{\prime}, \quad \text { i.e., } \quad u= \pm v+c
$$

for some constant $c \in \mathbb{R}$.

11.3 Lines of curvature

Definition 11.13. (Lines of curvature)
A curve $\boldsymbol{\alpha}: I \longrightarrow S$ on a surface S in \mathbb{R}^{3} is called a line of curvature if $\boldsymbol{\alpha}^{\prime}(s)$ is a principal direction at $\boldsymbol{\alpha}(s)$ for all $s \in I$, i.e., $\boldsymbol{\alpha}^{\prime}(s)$ is an eigenvector of the Weingarten map at $\boldsymbol{\alpha}(s)$ for all s.

Equivalently, $\boldsymbol{\alpha}$ is a line of curvature if there is a function $\lambda: I \longrightarrow \mathbb{R}$ such that

$$
-d \boldsymbol{N}_{\boldsymbol{\alpha}(s)}\left(\boldsymbol{\alpha}^{\prime}(s)\right)=\lambda(s) \boldsymbol{\alpha}^{\prime}(s)
$$

for all $s \in I$. (Here $\lambda(s)$ is a principal curvature at $\boldsymbol{\alpha}(s)$.)
Remark 11.14. Note that if the eigenvalues of a symmetric 2×2-matrix are different, then the corresponding eigenvectors are orthogonal. Hence, each non-umbilic point $\left(\kappa_{1}(p) \neq \kappa_{2}(p)\right)$ has two lines of curvature through it, and they intersect orthogonally. In an umbilic point, this family of orthogonally intersecting curves has a singularity.

Moreover any direction at an umbilic point is principal. In particular, on a sphere ($\kappa_{1}=\kappa_{2}>0$) or a plane ($\kappa_{1}=\kappa_{2}=0$) any curve is a line of curvature.

Proposition 11.15. (Lines of curvature in a local parametrisation) Let E, F, G and L, M, N be the coefficients of the first and second fundamental forms respectively w.r.t. a local parametrization $\boldsymbol{x}: U \longrightarrow$ S, and let $\boldsymbol{\alpha}$ be a curve in S with local parametrization $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$. Then $\boldsymbol{\alpha}$ is a line of curvature if and only if

$$
\operatorname{det}\left(\begin{array}{ccc}
\left(v^{\prime}\right)^{2} & -u^{\prime} v^{\prime} & \left(u^{\prime}\right)^{2} \\
E & F & G \\
L & M & N
\end{array}\right)=0
$$

or, equivalently,

$$
(F N-G M)\left(v^{\prime}\right)^{2}+(E N-G L) u^{\prime} v^{\prime}+(E M-F L)\left(u^{\prime}\right)^{2}=0 .
$$

Example 11.16. (Hyperbolic paraboloid)
Let $S=\{(x, y, z) \mid x y=z\}$ be a hyperbolic paraboloid parametrized by $\boldsymbol{x}(u, v)=(u, v, u v)$. Then

$$
\begin{aligned}
\boldsymbol{x}_{u}=(1,0, v), \quad \boldsymbol{x}_{v} & =(0,1, u), \quad \boldsymbol{N}=D^{-1}(-v,-u, 1), \quad D=\left(u^{2}+v^{2}+1\right)^{1 / 2} \\
\boldsymbol{x}_{u u} & =(0,0,0), \quad \boldsymbol{x}_{u v}=(0,0,1), \quad \boldsymbol{x}_{v v}=(0,0,0)
\end{aligned}
$$

and

$$
\begin{gathered}
E=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{u}=1+v^{2}, \quad F=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{v}=u v, \quad G=\boldsymbol{x}_{v} \cdot \boldsymbol{x}_{v}=1+u^{2}, \\
L=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}=0, \quad M=\boldsymbol{x}_{u v} \cdot \boldsymbol{N}=1 / D, \quad N=\boldsymbol{x}_{v v} \cdot \boldsymbol{N}=0
\end{gathered}
$$

Therefore, $\boldsymbol{\alpha}$ with $\boldsymbol{\alpha}(s)=\boldsymbol{x}(u(s), v(s))$ is a line of curvature iff

$$
\operatorname{det}\left(\begin{array}{ccc}
\left(v^{\prime}\right)^{2} & -u^{\prime} v^{\prime} & \left(u^{\prime}\right)^{2} \\
1+v^{2} & u v & 1+u^{2} \\
0 & 1 / D & 0
\end{array}\right)=\left(u^{\prime}\right)^{2}\left(1+v^{2}\right) / D-\left(v^{\prime}\right)^{2}\left(1+u^{2}\right) / D=0
$$

which is equivalent to

$$
\frac{u^{\prime}}{\left(1+u^{2}\right)^{1 / 2}}= \pm \frac{v^{\prime}}{\left(1+v^{2}\right)^{1 / 2}},
$$

and after integrating,

$$
\operatorname{arcsinh} u= \pm \operatorname{arcsinh} v+c
$$

for some constant $c \in \mathbb{R}$. For example, if $c=0$, then $u= \pm v$, or $s \mapsto \boldsymbol{x}(s, \pm s)=\left(s, \pm s, \pm s^{2}\right)$ are the lines of curvature through $p=(0,0,0)$.

The asymptotic curves here are given by

$$
\left(u^{\prime}\right)^{2} L+2 u^{\prime} v^{\prime} M+\left(v^{\prime}\right)^{2} M=2 u^{\prime} v^{\prime} / D=0,
$$

i.e., $u^{\prime}=0$ or $v^{\prime}=0$, so the asymptotic curves are the coordinate curves $s \mapsto \boldsymbol{x}\left(s, v_{0}\right)$ or $s \mapsto \boldsymbol{x}\left(u_{0}, s\right)$

Remark 11.17. (a) On a line of curvature, the normal curvature is a principal curvature.
Indeed, since $\boldsymbol{\alpha}$ is a line of curvature, we have $-d_{\boldsymbol{\alpha}(s)} \boldsymbol{N}\left(\boldsymbol{\alpha}^{\prime}(s)\right)=\lambda(s) \boldsymbol{\alpha}^{\prime}(s)$, and $\lambda(s)$ is a principal curvature at $\boldsymbol{\alpha}(s)$.
On the other hand,

$$
\kappa_{\mathrm{n}}(s)=\frac{I I_{\boldsymbol{\alpha}(s)}\left(\boldsymbol{\alpha}^{\prime}(s)\right)}{I_{\boldsymbol{\alpha}(s)}\left(\boldsymbol{\alpha}^{\prime}(s)\right.}=\frac{\left\langle-d_{\boldsymbol{\alpha}(s)} \boldsymbol{N}\left(\boldsymbol{\alpha}^{\prime}(s)\right), \boldsymbol{\alpha}^{\prime}(s)\right\rangle}{\left\langle\boldsymbol{\alpha}^{\prime}(s), \boldsymbol{\alpha}^{\prime}(s)\right\rangle}=\frac{\left\langle\lambda(s) \boldsymbol{\alpha}^{\prime}(s), \boldsymbol{\alpha}^{\prime}(s)\right\rangle}{\left\langle\boldsymbol{\alpha}^{\prime}(s), \boldsymbol{\alpha}^{\prime}(s)\right\rangle}=\lambda(s)
$$

(b) Assume that a line $\boldsymbol{\alpha}$ (or a part of it) belongs to a surface. When is this line a line of curvature?

On a line, the normal curvature is 0 , hence by the first part, one of its principal curvatures, say κ_{1}, has to vanish on $\boldsymbol{\alpha}$. But this means that the Gauss curvature (as the product of the two principal curvatures $K=\kappa_{1} \kappa_{2}$) has to vanish (and vice versa). Hence if $\boldsymbol{\alpha}: I \longrightarrow S$ is a line in S, then

$$
\boldsymbol{\alpha} \text { is a line of curvature } \quad \Leftrightarrow \quad(K(\boldsymbol{\alpha}(s))=0 \quad \forall s \in I) \text {. }
$$

This is equivalent to $L N-M^{2}=0$.
Proposition 11.18. (Lines of curvature for a principal parametrization)
If \boldsymbol{x} is a principal parametrization of a surface $S \subset \mathbb{R}^{3}$ (i.e., $F=0$ and $M=0$), then the coordinate curves are lines of curvature.

Example 11.19. (Lines of curvature for a surface of revolution)
On a surface of revolution, the coordinate curves of the standard parametrization given by $\boldsymbol{x}(u, v)=$ $(f(v) \cos u, f(v) \sin u, g(v))$ are also lines of curvature.

Remark 11.20. Note that the converse of Proposition 11.18 is also true in the following sense: if a parametrization \boldsymbol{x} is principal and the umbilic points are isolated, then the lines of curvature are coordinate curves.

