Epiphany 2017

Durham University Pavel Tumarkin

Differential Geometry III, Term 2 (Section 11)

11 Curves on surfaces

11.1 Coordinate curves

Definition 11.1. Let S be a regular surface in \mathbb{R}^n . A curve on the surface S is a smooth map $\alpha \colon I \longrightarrow S$ $(I \subset \mathbb{R} \text{ is an interval}).$

Remark 11.2. Recall: If $x: U \longrightarrow S$ is a local parametrisation $(U \subset \mathbb{R}^2 \text{ open})$ and $\alpha: I \longrightarrow x(U)$ a curve in $x(U) \subset U$, then we can write

$$\boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s)),$$

and

$$\boldsymbol{\alpha}' = u'\boldsymbol{x}_u + v'\boldsymbol{x}_v,$$

which implies

$$\|\boldsymbol{\alpha}'(t)\| = \sqrt{E(u(t), v(t))u'(t)^2 + 2F(u(t), v(t))u'(t)v'(t) + \dots}$$

Example 11.3. Coordinate curves: Let $x: U \to S$ be a local parametrization ($U \subset \mathbb{R}^2$ open) and $(u_0, v_0) \in U$, then

$$u \mapsto \boldsymbol{x}(u, v_0)$$

 $v \mapsto \boldsymbol{x}(u_0, v)$

are called *coordinate curves* through $p = \mathbf{x}(u_0, v_0)$. The local parametrization is given by $(u(s), v(s)) = (s, v_0)$ for the first, and $(u(s), v(s)) = (u_0, s)$ for the second.

One should note that coordinate curves are not intrinsic, they depend on the parametrization.

11.2 Geodesic and normal curvature

Assume now that $S \subset \mathbb{R}^3$, $\alpha \colon I \longrightarrow S \subset \mathbb{R}^3$ is a unit speed curve. Then $\alpha'(s)$ and $\alpha''(s)$ are orthogonal, and

$$\|\boldsymbol{\alpha}''(s)\| = \kappa(s),$$

where $\kappa(s)$ denotes the *curvature* of α as a space curve.

Denote by $N(\alpha(s))$ the Gauss map of the surface S at $\alpha(s)$. Since α'' is orthonormal to α' , it lies in the plane spanned by N and $N \times \alpha'$.

Definition 11.4 (Geodesic and normal curvature). If $\alpha \colon I \longrightarrow S$ is a curve on a surface S (with Gauss map N) parametrized by arc lenth, then we can write

$$\boldsymbol{\alpha}''(s) = \kappa_{g}(s)\boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \boldsymbol{\alpha}'(s) + \kappa_{n}(s)\boldsymbol{N}(\boldsymbol{\alpha}(s)).$$

We call $\kappa_g: I \longrightarrow \mathbb{R}$ the geodesic curvature and $\kappa_n: I \longrightarrow \mathbb{R}$ the normal curvature of α in S.

For a curve with an arbitrary parametrization on S the geodesic and normal curvatures are defined to be the same as for its unit speed reparametrization, i.e. if $\beta : J \to S$ is a curve, $\alpha : I \to S$ is a unit speed curve, and $\beta(t(s)) = \alpha(s)$, then $\kappa_{\beta,n}(t(s)) = \kappa_{\alpha,n}(s)$, and $\kappa_{\beta,g}(t(s)) = \kappa_{\alpha,g}(s)$. In other words, normal and geodesic curvatures are invariant under reparametrizations by definition. **Remark 11.5.** We have (if α is parametrized by arc length!)

$$\kappa_{\mathrm{n}} = \boldsymbol{\alpha}'' \cdot \boldsymbol{N}$$
 and $\kappa_{\mathrm{g}} = \boldsymbol{\alpha}'' \cdot (\boldsymbol{N} \times \boldsymbol{\alpha}')$

Furthermore, recall that the curvature κ of a *space curve* is given by $\kappa = \|\boldsymbol{\alpha}''\|$ (if $\boldsymbol{\alpha}$ is parametrized by arc length), and since \boldsymbol{N} and $\boldsymbol{N} \times \boldsymbol{\alpha}'$ form an orthonormal system, we have by Pythagoras' Theorem

$$\kappa = \| \boldsymbol{\alpha}'' \| = \sqrt{\kappa_{\mathrm{g}}^2 + \kappa_{\mathrm{n}}^2}$$

Example 11.6. (a) (Plane).

 $S = \{ (u, v, 0) | (u, v) \in \mathbb{R}^2 \}$, then $\mathbf{N} = (0, 0, 1)$. Let $\boldsymbol{\alpha} \colon I \longrightarrow S$, $\boldsymbol{\alpha}(s) = (u(s), v(s), 0)$, parametrized by arclength; then $\boldsymbol{\alpha}' = (u', v', 0)$, $\boldsymbol{n} \times \boldsymbol{\alpha}' = (-v', u', 0)$ so that

$$\boldsymbol{\alpha}'' = (u'', v'', 0) = \kappa_{\rm g}(\boldsymbol{N} \times \boldsymbol{\alpha}') + \kappa_{\rm n} \boldsymbol{N} = \kappa_{\rm g}(-v', u', 0) + \kappa_{\rm n}(0, 0, 1)$$

so that $\kappa_n = 0$, and, if κ is the curvature of $\boldsymbol{\alpha}$, $\kappa = \kappa_g$ (if $\boldsymbol{\alpha}$ is considered as a plane curve) or $\kappa = |\kappa_g|$ (if $\boldsymbol{\alpha}$ is considered as a space curve).

(b) (Lines on surfaces).

Assume that $\alpha(s) = p + sv$, ||v|| = 1, parametrizes a line $(s \in I \subset \mathbb{R})$ and that $\alpha(s) \in S$ for all $s \in I$ for some surface $S \subset \mathbb{R}^3$. Then

$$\boldsymbol{\alpha}' = \boldsymbol{v}, \qquad \boldsymbol{\alpha}'' = (0, 0, 0),$$

so that $\kappa_g = 0$ and $\kappa_n = 0$, i.e., the geodesic and normal curvature of a line on a surface both vanish.

Theorem 11.7 (Meusnier). All curves β through $p \in S$ with the same tangent vector $\boldsymbol{w} \in T_pS$ have the same normal curvature

$$\kappa_{\mathrm{n}}(s) = II_p\Big(\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}\Big).$$

In particular, the value $\kappa_n(\boldsymbol{w})$ is well defined for any $\boldsymbol{w} \in T_p S$.

Corollary. Let $p \in S$, $\boldsymbol{w} \in T_pS$, and let Π be the plane through p spanned by $\boldsymbol{N}(p)$ and \boldsymbol{w} . Then $\kappa_n(\boldsymbol{w}) = \kappa(\Pi \cap S)$, where $\Pi \cap S$ is considered as a plane curve with tangent vector \boldsymbol{w} at p.

Proposition 11.8. (Normal curvature in a local parametrization)

Let S be a surface in \mathbb{R}^3 , and let E, F, G and L, M, N be the coefficient of the first and second fundamental forms respectively w.r.t. a parametrization \boldsymbol{x} . Further, let $\boldsymbol{\alpha}$ be a curve in S (not necessarily parametrized by arc length) with local parametrization $\boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s))$. Then

$$\kappa_{n} = H_{p}\left(\frac{\boldsymbol{\alpha}'}{\|\boldsymbol{\alpha}'\|}\right) = \frac{(u')^{2}L + 2u'v'M + (v')^{2}N}{(u')^{2}E + 2u'v'F + (v')^{2}G} = \frac{H_{p}(\boldsymbol{\alpha}')}{I_{p}(\boldsymbol{\alpha}')}$$

Proposition 11.9. Let $\beta: I \longrightarrow S$ be a curve not necessarily parametrized by arc length, and let N be the Gauss map of S. Then the geodesic curvature of β can be calculated as

$$\kappa_{\mathrm{g}} = \frac{1}{\|\boldsymbol{\beta}'\|^3} (\boldsymbol{\beta}' \times \boldsymbol{\beta}'') \cdot \boldsymbol{N}.$$

Definition 11.10. (Asymptotic curves) A curve α on a surface $S \subset \mathbb{R}^3$ is called an *asymptotic curve* if its normal curvature vanishes identically (i.e., if $\kappa_n = 0$).

Remark 11.11. (i) The following are equivalent (TFAE):

- (a) $\boldsymbol{\alpha}$ is an asymptotic curve;
- (b) $\alpha'' \cdot (N \circ \alpha) = 0$ (if N is the Gauss map of S and α is parametrized by arc length);
- (c) $\kappa_{\rm n} = 0;$
- (d) $H_{\alpha(s)}(\alpha'(s)) = 0$ for all s (α not necessarily parametrized by arc length);
- (e) $(u')^2 L + 2u'v'M + (v')^2 N = 0$ in a local parametrization $s \mapsto \boldsymbol{x}(u(s), v(s))$ of $\boldsymbol{\alpha}$.

In particular, H_p is not positive or negative definite along α , so α has to be in the hyperbolic or flat region of the surface.

- (ii) $\kappa_{n}(\boldsymbol{w}) = 0$ for $\boldsymbol{w} \in T_{p}S$ implies $K(p) \leq 0$.
- (iii) If α is a line on S, then $\kappa_n = 0$, i.e., any line on a surface is an asymptotic curve.

Example 11.12. (Asymptotic curves on a surface of revolution/catenoid)

Recall that on a surface of revolution obtained by rotating a curve α given by $\alpha(v) = (f(v), 0, g(v))$ around the z-axis, we have

$$L = \frac{-fg'}{\|\alpha'\|}, \quad M = 0, \quad N = \frac{f''g' - f'g''}{\|\alpha'\|}$$

(see Example 9.13). A curve β parametrized locally by $\beta(t) = \mathbf{x}(u(t), v(t))$ is an asymptotic curve iff $(u')^2 L + 2u'v'M + (v')^2 N = 0$, i.e., iff

$$(u')^2 fg' = (v')^2 (f''g' - f'g'')$$

If in particular, $f(v) = \cosh v$ and g(v) = v (i.e., the surface of revolution is a *catenoid*), then the above equation becomes

$$(u')^2 \cosh v = (v')^2 \cosh v$$
, or, $u' = \pm v'$, i.e., $u = \pm v + c$

for some constant $c \in \mathbb{R}$.

11.3 Lines of curvature

Definition 11.13. (Lines of curvature)

A curve $\alpha \colon I \longrightarrow S$ on a surface S in \mathbb{R}^3 is called a *line of curvature* if $\alpha'(s)$ is a principal direction at $\alpha(s)$ for all $s \in I$, i.e., $\alpha'(s)$ is an eigenvector of the Weingarten map at $\alpha(s)$ for all s.

Equivalently, α is a line of curvature if there is a function $\lambda: I \longrightarrow \mathbb{R}$ such that

$$-dN_{\alpha(s)}(\alpha'(s)) = \lambda(s)\alpha'(s)$$

for all $s \in I$. (Here $\lambda(s)$ is a principal curvature at $\alpha(s)$.)

Remark 11.14. Note that if the eigenvalues of a symmetric 2×2 -matrix are different, then the corresponding eigenvectors are orthogonal. Hence, each non-umbilic point ($\kappa_1(p) \neq \kappa_2(p)$) has two lines of curvature through it, and they intersect orthogonally. In an umbilic point, this family of orthogonally intersecting curves has a singularity.

Moreover any direction at an umbilic point is principal. In particular, on a sphere ($\kappa_1 = \kappa_2 > 0$) or a plane ($\kappa_1 = \kappa_2 = 0$) any curve is a line of curvature.

Proposition 11.15. (Lines of curvature in a local parametrisation) Let E, F, G and L, M, N be the coefficients of the first and second fundamental forms respectively w.r.t. a local parametrization $\boldsymbol{x} \colon U \longrightarrow S$, and let $\boldsymbol{\alpha}$ be a curve in S with local parametrization $\boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s))$. Then $\boldsymbol{\alpha}$ is a line of curvature if and only if

det
$$\begin{pmatrix} (v')^2 & -u'v' & (u')^2 \\ E & F & G \\ L & M & N \end{pmatrix} = 0$$

or, equivalently,

$$(FN - GM)(v')^{2} + (EN - GL)u'v' + (EM - FL)(u')^{2} = 0.$$

Example 11.16. (Hyperbolic paraboloid)

Let $S = \{ (x, y, z) | xy = z \}$ be a hyperbolic paraboloid parametrized by $\boldsymbol{x}(u, v) = (u, v, uv)$. Then

$$oldsymbol{x}_u = (1,0,v), \quad oldsymbol{x}_v = (0,1,u), \quad oldsymbol{N} = D^{-1}(-v,-u,1), \quad D = (u^2 + v^2 + 1)^{1/2}$$

 $oldsymbol{x}_{uu} = (0,0,0), \quad oldsymbol{x}_{uv} = (0,0,1), \quad oldsymbol{x}_{vv} = (0,0,0)$

and

$$E = \boldsymbol{x}_u \cdot \boldsymbol{x}_u = 1 + v^2, \quad F = \boldsymbol{x}_u \cdot \boldsymbol{x}_v = uv, \quad G = \boldsymbol{x}_v \cdot \boldsymbol{x}_v = 1 + u^2,$$
$$L = \boldsymbol{x}_{uu} \cdot \boldsymbol{N} = 0, \quad M = \boldsymbol{x}_{uv} \cdot \boldsymbol{N} = 1/D, \quad N = \boldsymbol{x}_{vv} \cdot \boldsymbol{N} = 0$$

Therefore, $\boldsymbol{\alpha}$ with $\boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s))$ is a line of curvature iff

det
$$\begin{pmatrix} (v')^2 & -u'v' & (u')^2 \\ 1+v^2 & uv & 1+u^2 \\ 0 & 1/D & 0 \end{pmatrix} = (u')^2(1+v^2)/D - (v')^2(1+u^2)/D = 0,$$

which is equivalent to

$$\frac{u'}{(1+u^2)^{1/2}} = \pm \frac{v'}{(1+v^2)^{1/2}},$$

and after integrating,

$$\operatorname{arcsinh} u = \pm \operatorname{arcsinh} v + c$$

for some constant $c \in \mathbb{R}$. For example, if c = 0, then $u = \pm v$, or $s \mapsto \mathbf{x}(s, \pm s) = (s, \pm s, \pm s^2)$ are the lines of curvature through p = (0, 0, 0).

The asymptotic curves here are given by

$$(u')^{2}L + 2u'v'M + (v')^{2}M = 2u'v'/D = 0,$$

i.e., u' = 0 or v' = 0, so the asymptotic curves are the coordinate curves $s \mapsto \boldsymbol{x}(s, v_0)$ or $s \mapsto \boldsymbol{x}(u_0, s)$

Remark 11.17. (a) On a line of curvature, the normal curvature is a principal curvature.

Indeed, since $\boldsymbol{\alpha}$ is a line of curvature, we have $-d_{\boldsymbol{\alpha}(s)}N(\boldsymbol{\alpha}'(s)) = \lambda(s)\boldsymbol{\alpha}'(s)$, and $\lambda(s)$ is a principal curvature at $\boldsymbol{\alpha}(s)$.

On the other hand,

$$\kappa_{n}(s) = \frac{II_{\boldsymbol{\alpha}(s)}(\boldsymbol{\alpha}'(s))}{I_{\boldsymbol{\alpha}(s)}(\boldsymbol{\alpha}'(s))} = \frac{\langle -d_{\boldsymbol{\alpha}(s)}\boldsymbol{N}(\boldsymbol{\alpha}'(s)), \boldsymbol{\alpha}'(s) \rangle}{\langle \boldsymbol{\alpha}'(s), \boldsymbol{\alpha}'(s) \rangle} = \frac{\langle \lambda(s)\boldsymbol{\alpha}'(s), \boldsymbol{\alpha}'(s) \rangle}{\langle \boldsymbol{\alpha}'(s), \boldsymbol{\alpha}'(s) \rangle} = \lambda(s)$$

(b) Assume that a line α (or a part of it) belongs to a surface. When is this line a *line of curvature*?

On a line, the normal curvature is 0, hence by the first part, one of its principal curvatures, say κ_1 , has to vanish on α . But this means that the Gauss curvature (as the product of the two principal curvatures $K = \kappa_1 \kappa_2$) has to vanish (and vice versa). Hence if $\alpha: I \longrightarrow S$ is a line in S, then

 $\boldsymbol{\alpha}$ is a line of curvature $\Leftrightarrow (K(\boldsymbol{\alpha}(s)) = 0 \quad \forall s \in I).$

This is equivalent to $LN - M^2 = 0$.

Proposition 11.18. (Lines of curvature for a principal parametrization)

If x is a principal parametrization of a surface $S \subset \mathbb{R}^3$ (i.e., F = 0 and M = 0), then the coordinate curves are lines of curvature.

Example 11.19. (Lines of curvature for a surface of revolution)

On a surface of revolution, the coordinate curves of the standard parametrization given by $\boldsymbol{x}(u, v) = (f(v) \cos u, f(v) \sin u, g(v))$ are also lines of curvature.

Remark 11.20. Note that the converse of Proposition 11.18 is also true in the following sense: if a parametrization x is principal and the umbilic points are isolated, then the lines of curvature are coordinate curves.