Differential Geometry III, Term 2 (Section 13)

13 Gauss-Bonnet theorems

13.1 A bit of topology

Definition 13.1. (a) A surface $S \subset \mathbb{R}^{n}$ is a closed surface if S is bounded, connected and closed (as a set).
(b) A surface is oriented if the Gauss map can be defined globally as a continuous map.
(c) A region of a surface S is a subset of S such that its boundary consists of a finite number of smooth curves (called edges) and its interior is non-empty. We call the points in which two smooth curves meet on the boundary vertices (and we assume for simplicity that the curves meet non-tangentially).
(d) A triangle is a region with three edges and three vertices homeomorphic to a disc (note that the edges, as well as the vertices, may coincide).
(e) A triangulation of a (bounded) region R is a subdivision of S into a finite number of triangles meeting only in common edges or common vertices.
(f) The Euler characteristic of a region R is defined by

$$
\begin{aligned}
\chi(R): & =F(R)-E(R)+V(R) \\
& =\# \text { triangles }-\# \text { edges }+ \text { \#vertices },
\end{aligned}
$$

where $F(R)$ is the number of triangles, $E(R)$ the number of edges and $V(R)$ the number of vertices of the triangulation.

Example 13.2. A closed disc has Euler characteristic 1, a sphere has Euler characteristic 2, a closed cylinder $S^{1} \times[0,1]$ (as well as a torus) has Euler characterisic 0 .

A priori, the Euler characteristic may depend on the triangulation.
Theorem 13.3. The Euler characteristic is independent of the triangulation.
Basically, oriented closed surfaces can be topologically characterized by their Euler characteristic:

$$
\chi(S)=2-2 g
$$

where g is the genus of S (roughly, the number of "handles" in S).
Theorem 13.4 (Jordan Curve Theorem). Let S be a surface homeomorphic to the plane, and let $\boldsymbol{\alpha}:[0,1] \longrightarrow S$ be a simple closed curve (i.e., $\boldsymbol{\alpha}(0)=\boldsymbol{\alpha}(1)$ and $\boldsymbol{\alpha}\left(t_{1}\right) \neq \boldsymbol{\alpha}\left(t_{2}\right)$ for $t_{1}<t_{2}$ other than $t_{1}=0, t_{2}=1$). Then $S \backslash \boldsymbol{\alpha}(I)$ has exactly two components, and one of them is homeomorphic to a disc.

13.2 The Gauss-Bonnet theorem

Definition 13.5. Let $R \subset S$ be a region.
(a) Denote by $\mathrm{d} A$ the area measure of a surface S (locally, $\mathrm{d} A=\sqrt{E G-F^{2}} \mathrm{~d} u \mathrm{~d} v$), and we will write

$$
\int_{R} K \mathrm{~d} A
$$

for the integral of the Gauss curvature over R (the total Gauss curvature of R).
(b) Denote by $\mathrm{d} s$ the length measure of a curve or the boundary of a region, we will write

$$
\int_{\partial R} \kappa_{\mathrm{g}} \mathrm{~d} s=\sum_{j=1}^{r} \int_{I_{j}} \kappa_{\mathrm{g}, \boldsymbol{\alpha}_{j}}(s) \mathrm{d} s_{j}
$$

for the line integral of the geodesic curvature along the boundary of a region consisting of r smooth curves $\boldsymbol{\alpha}_{j}$.
(c) Let us parametrize the curves along ∂R counter-clockwise, and the curves are numbered in the same direction. We define the angle ϑ_{j} at the vertex v_{j} (where curve $\boldsymbol{\alpha}_{j-1}$ and $\boldsymbol{\alpha}_{j}$ meet) as the angle between the tangent vector of $\boldsymbol{\alpha}_{j-1}$ with the tangent vector of $\boldsymbol{\alpha}_{j}$, i.e. ϑ_{j} is the exterior angle of R at v_{j}.

Note that all objects here are intrinsic (Gauss curvature, geodesic curvature), so we can state the Gauss-Bonnet Theorem for any surface S embedded in \mathbb{R}^{n} (not only for $n=3$).

Theorem 13.6 (Global Gauss-Bonnet Theorem). Let R be a region in an oriented surface S. Then

$$
\int_{R} K \mathrm{~d} A+\int_{\partial R} \kappa_{\mathrm{g}} \mathrm{~d} s+\sum_{j=1}^{r} \vartheta_{j}=2 \pi \chi(R) .
$$

Let us mention some special cases.
Corollary 13.7 (Special cases of the Gauss-Bonnet Theorem).
(a) (R bounded by geodesics) If the region R is bounded piecewise by geodesics, then

$$
\int_{R} K \mathrm{~d} A+\sum_{j=1}^{r} \vartheta_{j}=2 \pi \chi(R) .
$$

(b) (R bounded by a closed geodesic) If γ is a simple closed geodesic and R is a region having γ as its boundary, then

$$
\int_{R} K \mathrm{~d} A=2 \pi \chi(R)
$$

(c) (No boundary, case $R=S, \partial R=\emptyset$) If S is a closed surface, then

$$
\int_{S} K \mathrm{~d} A=2 \pi \chi(S)
$$

Theorem 13.8 (Local Gauss-Bonnet Theorem/Gauss-Bonnet Theorem for triangles). Let T be a triangle in an oriented surface S with interior angles α, β and γ. Then

$$
\int_{T} K \mathrm{~d} A+\int_{\partial T} \kappa_{\mathrm{g}} \mathrm{~d} s=\alpha+\beta+\gamma-\pi .
$$

Some more special cases.
Corollary 13.9. Assume that S is a surface of constant Gauss curvature K. Assume additionally, that T is a geodesic triangle in S (i.e., ∂T consists of three arcs of geodesics). Then

$$
K \cdot(\operatorname{area} T)=\alpha+\beta+\gamma-\pi .
$$

Example 13.10.

(a) On a sphere $(K=1)$, the sum of angles in a (geodesic) triangle is always larger than π and the difference is equal to the area of the triangle.
(b) On a plane $(K=0)$, the sum of angles in a (geodesic) triangle is always π (independent of the area of the triangle).
(c) On the hyperbolic plane $(K=-1)$, the sum of angles in a (geodesic) triangle is always smaller than π and the difference is equal to the area of the triangle.
Example 13.11. (a) The total Gauss curvature of the region R of a unit sphere given by the triangle with vertices at the North pole and two points on the equator at distance one quarter of the circumference is equal to $\pi / 2$ as R covers one eighth of the surface of the unit sphere. On the other hand, one can observe that R is a regular right-angled triangle, so the statement of the local Gauss-Bonnet theorem becomes "area of $R=3 \pi / 2-\pi$ ".
(b) The total Gauss curvature of a surface T homeomorphic to a torus is equal to zero since the Euler characteristic is zero. In particular, if T is not flat everywhere, then it contains elliptic, parabolic and flat points.

Example 13.12. Let S be homeomorphic to the plane \mathbb{R}^{2}, and assume that $K \leq 0$ everywhere on S. Then S cannot have any simple closed geodesic.

Indeed, by the Jordan curve theorem, a simple closed curve $\boldsymbol{\alpha}$ encloses two regions, one of them homeomorphic to a disc; call this region R. If we assume now that $\boldsymbol{\alpha}$ were a closed geodesic, then its geodesic curvature would vanish and there would be no vertices, hence by the Gauss-Bonnet theorem we would have

$$
\int_{R} K \mathrm{~d} A+\underbrace{\int_{\partial R} \kappa_{\mathrm{g}} \mathrm{~d} s}_{=0}+\underbrace{\sum_{j=1}^{r} \vartheta_{j}}_{=0}=2 \pi \underbrace{\chi(R)}_{=1}
$$

as the Euler characteristic of a disc is $\chi(R)=1$ (the same as for a triangle). But since $K \leq 0$, the integral $\int_{R} K \mathrm{~d} A \leq 0$, and this is a contradiction. Therefore, there is no such geodesic.
Example 13.13. One can verify the local Gauss-Bonnet theorem explicitly for an "ideal" triangle on a hyperbolic plane: the area of the region bounded by two vertical lines $u=u_{1}$ and $u=u_{2}$ and a semicircle intersecting the real axis at points u_{1} and u_{2} is equal to π.
Example 13.14. Let T be a flat torus in \mathbb{R}^{4} (i.e. a torus parametrized by $\boldsymbol{x}(u, v)=(\cos u, \sin u, \cos v, \sin v)$). The Gauss-Bonnet theorem implies that any non-closed geodesic on T is not self-intersecting.

The same result can be obtained by considering the geodesics on T as images of lines on \mathbb{R}^{2} under local isometry \boldsymbol{x}.

