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Differential Geometry III, Term 2 (Section 13)

13 Gauss–Bonnet theorems

13.1 A bit of topology

Definition 13.1. (a) A surface S ⊂ Rn is a closed surface if S is bounded, connected and closed (as a
set).

(b) A surface is oriented if the Gauss map can be defined globally as a continuous map.

(c) A region of a surface S is a subset of S such that its boundary consists of a finite number of smooth
curves (called edges) and its interior is non-empty. We call the points in which two smooth curves
meet on the boundary vertices (and we assume for simplicity that the curves meet non-tangentially).

(d) A triangle is a region with three edges and three vertices homeomorphic to a disc (note that the
edges, as well as the vertices, may coincide).

(e) A triangulation of a (bounded) region R is a subdivision of S into a finite number of triangles
meeting only in common edges or common vertices.

(f) The Euler characteristic of a region R is defined by

χ(R) : = F (R)− E(R) + V (R)

= #triangles − #edges + #vertices,

where F (R) is the number of triangles, E(R) the number of edges and V (R) the number of vertices
of the triangulation.

Example 13.2. A closed disc has Euler characteristic 1, a sphere has Euler characteristic 2, a closed
cylinder S1 × [0, 1] (as well as a torus) has Euler characterisic 0.

A priori, the Euler characteristic may depend on the triangulation.

Theorem 13.3. The Euler characteristic is independent of the triangulation.

Basically, oriented closed surfaces can be topologically characterized by their Euler characteristic:

χ(S) = 2− 2g,

where g is the genus of S (roughly, the number of “handles” in S).

Theorem 13.4 (Jordan Curve Theorem). Let S be a surface homeomorphic to the plane, and let
α : [0, 1] −→ S be a simple closed curve (i.e., α(0) = α(1) and α(t1) 6= α(t2) for t1 < t2 other than
t1 = 0, t2 = 1). Then S \α(I) has exactly two components, and one of them is homeomorphic to a disc.
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13.2 The Gauss–Bonnet theorem

Definition 13.5. Let R ⊂ S be a region.

(a) Denote by dA the area measure of a surface S (locally, dA =
√
EG− F 2 dudv), and we will write∫

R
K dA

for the integral of the Gauss curvature over R (the total Gauss curvature of R).

(b) Denote by ds the length measure of a curve or the boundary of a region, we will write∫
∂R
κg ds =

r∑
j=1

∫
Ij

κg,αj (s) dsj

for the line integral of the geodesic curvature along the boundary of a region consisting of r smooth
curves αj .

(c) Let us parametrize the curves along ∂R counter-clockwise, and the curves are numbered in the same
direction. We define the angle ϑj at the vertex vj (where curve αj−1 and αj meet) as the angle
between the tangent vector of αj−1 with the tangent vector of αj , i.e. ϑj is the exterior angle of R
at vj .

Note that all objects here are intrinsic (Gauss curvature, geodesic curvature), so we can state the
Gauss–Bonnet Theorem for any surface S embedded in Rn (not only for n = 3).

Theorem 13.6 (Global Gauss–Bonnet Theorem). Let R be a region in an oriented surface S. Then∫
R
K dA+

∫
∂R
κg ds+

r∑
j=1

ϑj = 2πχ(R).

Let us mention some special cases.

Corollary 13.7 (Special cases of the Gauss–Bonnet Theorem).

(a) (R bounded by geodesics) If the region R is bounded piecewise by geodesics, then∫
R
K dA+

r∑
j=1

ϑj = 2πχ(R).

(b) (R bounded by a closed geodesic) If γ is a simple closed geodesic and R is a region having γ as its
boundary, then ∫

R
K dA = 2πχ(R).

(c) (No boundary, case R = S, ∂R = ∅) If S is a closed surface, then∫
S
K dA = 2πχ(S).

2



Theorem 13.8 (Local Gauss–Bonnet Theorem/Gauss–Bonnet Theorem for triangles). Let T be a triangle
in an oriented surface S with interior angles α, β and γ. Then∫

T
K dA+

∫
∂T
κg ds = α+ β + γ − π.

Some more special cases.

Corollary 13.9. Assume that S is a surface of constant Gauss curvature K. Assume additionally, that
T is a geodesic triangle in S (i.e., ∂T consists of three arcs of geodesics). Then

K · (areaT ) = α+ β + γ − π.

Example 13.10.

(a) On a sphere (K = 1), the sum of angles in a (geodesic) triangle is always larger than π and the
difference is equal to the area of the triangle.

(b) On a plane (K = 0), the sum of angles in a (geodesic) triangle is always π (independent of the area
of the triangle).

(c) On the hyperbolic plane (K = −1), the sum of angles in a (geodesic) triangle is always smaller than
π and the difference is equal to the area of the triangle.

Example 13.11. (a) The total Gauss curvature of the region R of a unit sphere given by the triangle
with vertices at the North pole and two points on the equator at distance one quarter of the
circumference is equal to π/2 as R covers one eighth of the surface of the unit sphere. On the
other hand, one can observe that R is a regular right-angled triangle, so the statement of the local
Gauss–Bonnet theorem becomes “area of R = 3π/2− π”.

(b) The total Gauss curvature of a surface T homeomorphic to a torus is equal to zero since the Euler
characteristic is zero. In particular, if T is not flat everywhere, then it contains elliptic, parabolic
and flat points.

Example 13.12. Let S be homeomorphic to the plane R2, and assume that K ≤ 0 everywhere on S.
Then S cannot have any simple closed geodesic.

Indeed, by the Jordan curve theorem, a simple closed curve α encloses two regions, one of them
homeomorphic to a disc; call this region R. If we assume now that α were a closed geodesic, then its
geodesic curvature would vanish and there would be no vertices, hence by the Gauss–Bonnet theorem we
would have ∫

R
K dA+

∫
∂R
κg ds︸ ︷︷ ︸
=0

+
r∑

j=1

ϑj︸ ︷︷ ︸
=0

= 2π χ(R)︸ ︷︷ ︸
=1

as the Euler characteristic of a disc is χ(R) = 1 (the same as for a triangle). But since K ≤ 0, the integral∫
RK dA ≤ 0, and this is a contradiction. Therefore, there is no such geodesic.

Example 13.13. One can verify the local Gauss–Bonnet theorem explicitly for an “ideal” triangle on a
hyperbolic plane: the area of the region bounded by two vertical lines u = u1 and u = u2 and a semicircle
intersecting the real axis at points u1 and u2 is equal to π.

Example 13.14. Let T be a flat torus in R4 (i.e. a torus parametrized by x(u, v) = (cosu, sinu, cos v, sin v)).
The Gauss–Bonnet theorem implies that any non-closed geodesic on T is not self-intersecting.

The same result can be obtained by considering the geodesics on T as images of lines on R2 under
local isometry x.
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