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Differential Geometry III, Term 2 (Section 8)

8 Smooth maps between surfaces

Recall that f: U — R™ is smooth at p € U if all partial derivatives of f at p exist and are continuous.
We need U C R" to be open to be able to define a partial derivative.

Let S C R™ be a regular surface and f: S — R™. Since S is not open in R™ (n > 3), we need to
define smoothness of f on S.

Definition 8.1. We say that f: S — R™ is smooth at p if
fox: U —R™
is smooth at ¢ where &: U — S is a parametrization with x(q) = p.

Remark 8.2. This definition does not depend on the parametrization x. Indeed, if y: V' — S'is another
parametrization (assume that x(U) = y(V')), then there exists a diffeomorphism h: U — V such that
y = x o h (change of parameter). In particular, f oy = (f o x) o h is also smooth.

8.1 The Gauss map

Let S be a regular surface in R3.
Definition 8.3. The Gauss map
N:S—S°
assigns, to each point p € S, the unit normal to S at p, i.e., the unit vector orthogonal to 7,5 C R3
(which is determined up to sign only!). Here, S? := { (z,y, 2) € R®|2? + y?> + 2% = 1} is the unit sphere
in R3.
In a local parametrization &: U — S of S, we have

T, X T,

Nox(u,v) = ——(u,v),
(u,v) T X wvH( )
and this map is always smooth.
Example 8.4.
(a) Plane in R3: S = {(z,y,2)R3|ax +by +cz+d=0}. Then N = \/% = const.

(b) Graph of a function: S = { (u,v,¢(u,v))|(u,v) € U}, g: U — R smooth, then x, = (1,0, g,),
x, = (0,1, g,), then the Gauss map is given by N: S — 52

Ty X Ty 1

T e x @l T (90)” + (90)

As an example, take g(u,v) = u? + v2, then

5 (_gu7 —Gv, ]-)

1
N(a:(u, U)) = (—2U, _2Ua 1)
V1 + 4u? + 4v?

Also, S = f71(0) for f(z,y,2) = 2> +y?—2,s0 Vf = (2z,2y, —1) is proportional to N as expected.




(¢) The catenoid: x(u,v) = (coshv cosu, coshvsinu,v), then
@y (u,v) = (— coshvsinu,coshvcosu,0) and x,(u,v) = (sinhvcosu,sinhvsinu,1)

so that
(xy X Ty)(u,v) = (coshv cosu, cosh vsin u, — coshvsinhv),

and therefore
N(z(u,v)) =

(cosu, sinu, —sinh v).
coshv

(d) The sphere: N: S? — S? is given by N(p) = p.

Remark. The Gauss map is well defined on x(U), but we may not be able to define it (continuously) on
all §

Example 8.5. Mo6bius band
Definition 8.6. A surface in R? is non-orientable if it is not possible to define the Gauss map globally.
Example 8.7. Further maps on surfaces. Let S C R? be a surface.

(a) Height function. Fix v € S?, and define a function h: S — R by h(p) := p-v. Then h is smooth.
You can think of h measuring the height of S if you stand on the plane orthogonal to v fixed e.g.
at the origin of R3.

(b) Distance squared function. Let a € R? and define d*: S — R by d?(p) == |lp—a|* = (p — a) -
(p — a), then d? is smooth. (d measures the distance of p from a in the ambient space R3).
8.2 The derivative of a smooth map between surfaces

Definition 8.8. Let S be a regular surface in R, p € S and f: S — R™ a smooth map. The derivative

of f at p is a linear map
dpf:T,8 — R™

such that
dpf(“%) = au(f © w)(Q) and dpf(mv) = 8v(f © w)(@)

for a local parametrization x: U — S of S with x(¢) = p, ¢ € U C R2. For short, we write
Jur=dpf(zy) and fy:=dpf(zv),

suppressing the local parametrisation « in the notation f, and f,.

Remark 8.9.

(a) As {zy,x,} is a basis of T,,S, and w € T}, can be written as w = ax,, + x,, we have

dy f(w) = d, f(azy + bxy,) = ad, f(xy,) + bd, f(xy)
by the linearity of d, f.

(b) dpf does not depend on the choice of local parametrization . Indeed, if we take w € 7,5 and
compute its image, then if w = o/(0) for a: I — S a smooth curve, a(0) = p, we have d, f(w) =

(f 0 @)'(0)).



Example 8.10. (a) Let S = {(z,y,2) € R*| 2% +4? = 1} be a cylinder in R? and f: S — R be given
by f(p) =p-p=|p|>. A local parametrization of S is given by

x:U— S, x(V,z) = (cosv,sin, z), W,r)eU

Here, at least two parameter domains U; = (0,27) x R and Us = (—m,7) x R are needed in order
to cover the entire cylinder. Then we have (f ox)(1J,2) = f(cosd,sin?, z) and

dpf(mﬁ):fﬁ:aaﬁ(fow)zo and dpf(wz):fz:aaz(fom)ZQZ‘

(b) (Gauss map of a catenoid) Let S be parametrized by
x(u,v) = (cosh v cosu, coshvsinu, v),

then its Gauss map is given by

N(x(u,v)) = (cosu,sinu, —sinhv).

coshv

In particular, the derivative is

1 .
d,N(x,) = N, = p—— (—sinu,cosu,0) and
1
d,N(x,) = N, = 5— (— cosusinhv, —sinusinhv, —1).
cosh”v

Proposition 8.11 (Chain Rule). Let f: S; — S3 and g: S2 — S3 be smooth maps between the
surfaces 51, So and S3, then go f: §; — S5 is smooth and its derivative is given by

dp(go f) =dspgodpf: TpSt — Ty(rp))S3

as linear maps, or pointwise,
dp(g o f)(w) = dyp)g(dyp f(w))
for all w € T),S1 and p € S;.

8.3 Isometries and conformal maps
Let S C R? be a regular surface. Recall that the first fundamental form (1°*FF) is given by
LTS — R, Lw) = (w,w)p = ]
Recall also that the 15'FF is needed to calculate
e lengths of curves in S,
e angles between curves in S and
e the area of subsets of S.

Let now S and S be two surfaces with lthFs I and I respectively, let f: S — S be a smooth map. If
dpf:T,8 — Tf(p)S ‘preserves” I, and I, f(p), then these calculations should give the same result, i.e., S

and S are bassically the same from a metric point of view (at least locally: see Example 8.13 (a) below)



Definition 8.12. Let f: S — S be a smooth map between two surfaces S and S.

(a) The map f is called a (local) isometry if

<dpf(w1)a dpf(w2)>f(p) = (wy, w2>p

for all wy,wy € T,S and p € S. The surfaces S and S are called (locally) isometric if there is a
(local) isometry between them.

(b) The map f is called a (global) isometry if f is a local isometry and, additionally, f: S — S is
bijective.

The surfaces S and S are called (globally) isometric if there is a (globally) isometry between them.
(¢) The map f is called conformal if there is a smooth function
A S — (0,00)

such that
(dpf(w1),dpf(w2)) ¢(p) = AMp) (w1, wa)p
for all wi,wy € T,S and p € S.

The surfaces S and S are called conformally equivalent if there is a conformal map between them.
Remark.

(a) Given a symmetric bilinear form (,), one can write (w1, ws) = £ ([lwy + wo||? — ||1v1\|2 — |lws]|?),

which means that being a local isometry is equivalent to preserving 15'FF, ie. I f(p) (dpf(w)) =
I,(w), cf. Prop. 8.15.

(b) A conformal map with A = 1 is obviously a local isometry.
(c) A global isometry is obviously a local isometry, but not vice versa (see Example 8.13 (c) below).

(d) Conformal maps preserve angles. Indeed,

o L <w17w1>P an
V= Llwn ) = e, ™
<dpf(w1)adpf(w1)>p )\(p) <w17w1>1’

ldpf(wn). dpf(02)) = o el ol — @l il

since the factors involving A(p) > 0 cancel each other.

(e) Local isometries preserve lengths of curves (but not distances between points). Global isometries
preserve distances.

Example 8.13.

(a) Let S = (0,27) x R and S = {(z,y,2) € R3|22 + 42 = 1} (a cylinder). Define f: S — S by
f(¥,2) = (cos¥,sind, z) for p = (¥, z) € S. We can think of S as being parametrized by itself (as a
subset of the plane R?), and 7,5 = R?.

One way to show that f is a local isometry is to ensure that it preserves 13°FF (the identity matrix),
which is an elementary computation of fy and f, and their dot products, cf. Prop. 8.15.



Alternatively, one can compute the differential of f explicitely. Write w = (a,b) € T,S. We need
a: I — S with I being an open interval containing 0, a(0) = p and &/(0) = w. Take a line
through p € S C R? in direction w, i.e.

a(t) =p+tw = (9 +ta,z + tb).
Then
dpf(w) = dpf(/(0)) = (f 0 )'(0)

Here, we have
(f o a@)(t) = (cos(Vta),sin(V + ta),z + tb),

so that
(f o) (0) = (—asind,acosd,b) = dyf(w).

Now,
(dpf(w),dyf(w)) py = ((—asind, acos ¥V, b), (—asind,acos, b)) = a’® + b2,

but we also have (w, w), = a? + b?, hence f is a local isometry.

(b) If we consider f: S — {(x,y,2) |22 +y* =1, (z,y) # (1,0) }, then f is bijective (check this!) and
f is indeed a global isometry.

(c) If we consider f: R x R —» S (with the same definition of f(¢, z) as before, but now ¥ € R), then
f is still a local isometry (the calculation remains the same as above), but not a global isometry: f
is no longer injective and hence not bijective.

Example 8.14 (Conformal bijections of R?). As one can recall from Complex Analysis, conformal
maps are holomorphic (or anti-holomorphic) and vise versa. Thus conformal bijections of the plane are
holomorphic one-to-one maps. They must have a single pole at infinity, so they are polynomial of degree
one (possibly with conjugation), i.e. f(z) =az+bor f(z) =az+b, a,b € C, a # 0. The conformal factor
is \(2) = |a|?.

Proposition 8.15. Let 5, S be two surfaces and ¢: U —» S be a local parametrization of S.
A map f: S — S is a local isometry on x(U) if and only if

<.fw.fu> = E7 <fu,fv> =F and <.fvv,fv> = G) (8'_2)

where E, F,G are the coefficients of the 15'FF w.r.t. z. Here f, = 0,(f ox) and f, = 0,(f o x) and
(u,v) € U are the parameter coordinates).

Remark.

(a) If we denote by E, F and G the coefficients of the 1FF of S w.r.t. the parametrization & =
fox: U — S, then we can rephrase this as

E=E, F=F and G=G.

(b) A similar result holds for conformal maps: f is conformal on x(U) iff there exists a smooth map
p: U — (0,00) such that

<fu7fu> =ukE, <.fw.fv> = pk  and <fv7fv> = pG,

Example 8.16. (a) Spheres of distinct radii are conformally equivalent (but not isometric, will see this
later).



(b) Gauss map of the catenoid is conformal. We have seen in Example 8.10 (b) and previous
examples that for the parametrization « given by

x(u,v) = (cosh v cosu, coshvsinu, v),
the coefficients of the 15'FF are
E=G=-cosh’?v and F =0.

Moreover, the derivatives of the Gauss map are

1 —sinu —cosusinhv
= cos U and N, = ——— | —sinusinhv
coshv cosh“ v
0 -1
Now,
(N, Ny = —— L B, (NMN)=0=F and
5 = = 5 s = = an
e cosh?v  cosh*wv e
sinh?v + 1 1 1
N,, N,) = = = G,
(N, No) cosh* v cosh’?v  cosh*wv

so N is a conformal map with conformal factor (in local parametrization) u given by p(u,v) =
1/ cosh*(v).



