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Differential Geometry III, Term 2 (Section 9)

9 Geometry of the Gauss map

9.1 The Weingarten map

Lemma 9.1. Let S be a surface in R3 and N : S −→ S2 be its Gauss map. Then dpN(w) is orthogonal
to N(p) for every w ∈ TpS. In particular, we can identify TN(p)S

2 and TpS, and consider dpN as a map

dpN : TpS −→ TpS.

Moreover, dpN is symmetric, i.e.,

〈dpN(w1),w2〉 = 〈w1, dpN(w2)〉

for all w1,w2 ∈ TpS.

Definition 9.2. (a) The map −dpN : TpS −→ TpS is called the Weingarten map of the surface S ⊂ R3

at p ∈ S.

(b) The quadratic form IIp : TpS −→ R, IIp(w) = 〈−dpN(w),w〉, is called the second fundamental
form of S at p.

Remark 9.3. Since −dpN is symmetric, the Weingarten map is diagonalizable in an orthogonal basis of
TpS.

Since −dpN is now a linear operator on the tangent space TpS, we can calculate its characteristic
polynomial, trace, determinant and eigenvalues (these do not depend on a basis).

Definition 9.4. Let S be a regular surface in R3 with Gauss map N : S −→ S2 and Weingarten map
−dpN : TpS −→ TpS at p ∈ S.

(a) K(p) = det (−dpN) is called the Gauss curvature of S at p.

(b) H(p) = 1
2 tr (−dpN) is called the mean curvature of S at p.

(c) The eigenvalues κ1(p), κ2(p) of −dpN are called principal curvatures of S at p.

(d) The eigenvectors e1(p), e2(p) of −dpN are called principal directions of S at p (i.e., −dpN(ei(p)) =
κi(p)ei(p)).

Remark 9.5. Obviously, we have

K(p) = κ1(p)κ2(p), H(p) =
1

2

(
κ1(p) + κ2(p)

)
.
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Example 9.6 (Sphere). Let S = S2(r) for some r > 0 be a sphere. The normal vector at p ∈ S is given
by

N(p) =
1

r
p.

Thus, the Weingarten map is a scalar operator

−dpN(w) = −1

r
w.

In particular, the second fundamental form is

IIp(w) = 〈−dpN(w),w〉 = −1

r
‖w‖2.

Moreover, the eigenvalues are κ1(p) = κ2(p) = −1/r, the Gauss curvature is K(p) = 1/r2 and the mean
curvature is H(p) = −1/r.

Definition 9.7. Let S be a regular surface in R3 with Gauss map N : S −→ S2, and let x : U −→ S be
a local parametrization. We call

L = xuu ·N , M = xuv ·N and N = xvv ·N

the coefficients of the second fundamental form.

Proposition 9.8. L,M,N are indeed the coefficients of IIp in the basis {xu,xv}, i.e.

IIp(axu + bxv) = a2L+ 2abM + b2N

Computing the matrix of the Weingarten map in the basis {xu,xv} gives a matrix

−dpN =
1

EG− F 2

(
GL− FM GM − FN
−FL+ EM −FM + EN

)
,

which results in the following.

Proposition 9.9.

K =
LN −M2

EG− F 2
, H =

1

2

EN − 2FM +GL

EG− F 2
.

Example 9.10. Hyperbolic paraboloid.
Let S := { (x, y, z) |x2 − y2 + z = 0 }. It may be parametrized as a graph of a function z = f(x, y) =

y2 − x2, i.e., x(u, v) = (u, v, v2 − u2) for (u, v) ∈ U = R2. Then

xu = (1, 0,−2u), xv = (0, 1, 2v),

xuu = (0, 0,−2), xuv = (0, 0, 0), xvv = (0, 0, 2).

We also need the normal and calculate

xu × xv = (2u,−2v, 1),

which has norm D = (4u2 + 4v2 + 1)1/2, hence

N ◦ x =
1

D
(2u,−2v, 1).
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The coefficients of the 1stFF and 2ndFF are

E = xu · xu = 1 + 4u2, F = xu · xv = −4uv, G = xv · xv = 1 + 4v2

L = xuu ·N =
−2

D
, M = xuv ·N = 0, N = xvv ·N =

2

D
.

Now,

EG− F 2 = (1 + 4u2)(1 + 4v2)− 16u2v2 = 1 + 4u2 + 4v2 = D2 and LN −M2 =
−4

D2
,

so that the Gauss curvature is

K =
LN −M2

EG− F 2
=
−4

D4
< 0

and the mean curvature is

H =
EN +GL

2(EG− F 2)
=

(1 + 4u2)− (1 + 4v2)

D3
=

4(u2 − v2)
D3

.

Let us calculate the principal curvatures at x(0, 0) = (0, 0, 0) (i.e., (u, v) = (0, 0)). Here, K = −4 and
H = 0, hence we look for the roots κ of

κ2 − 2Hκ+K = 0, or, κ2 − 4 = 0,

i.e., κ1 = 2 and κ2 = −2.

Definition 9.11. A parametrization x with F = 0 is called orthogonal, a parametrization x with F = 0
and M = 0 is called principal.

Proposition 9.12. Assume that the parametrization x of a surface is principal (i.e., F = 0 and M = 0),
then xu and xv are the principal directions. Moreover, the principal curvatures are

κ1 =
L

E
and κ2 =

N

G
.

Hence, the Gauss and mean curvatures are

K = κ1κ2 =
LN

EG
and H =

1

2
(κ1 + κ2) =

GL+ EN

2EG
.

Example 9.13. Surface of revolution. Let S be obtained by rotating the curve given by α(v) =
(f(v), 0, g(v)), v ∈ I (some open interval) around the z-axis. Let us assume that f(v) > 0. A local
parametrization is then given by

x(u, v) =

f(v) cosu
f(v) sinu
g(v)


for (u, v) ∈ U1 = (0, 2π)× I (and (u, v) ∈ U2 = (−π, π)× I to cover the surface entirely). The derivatives
are

xu =

−f(v) sinu
f(v) cosu

0

 and xv =

f ′(v) cosu
f ′(v) sinu
g′(v)

 .

For the coefficients of the second fundamental form, we also need the second derivatives of x:

xuu =

−f(v) cosu
−f(v) sinu

0

 , xuv = xvu =

−f ′(v) sinu
f ′(v) cosu

0

 and xvv =

f ′′(v) cosu
f ′′(v) sinu
g′′(v)

 .
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The normal vector at p = x(u, v) is

N(p) =
( 1

‖xu × xv‖
xu × xv

)
(u, v) =

1

α′(v)

g′(v) cosu
g′(v) sinu
−f ′(v)

 ,

where ‖α′(v)‖ = (f ′(v)2 + g′(v)2)1/2. Now, the coefficients of the second fundamental form are

L = xuu ·N =
−fg′

‖α′‖
, M = xuv ·N = 0 and

N = xvv ·N =
f ′′g′ − f ′g′′

‖α′‖
.

The coefficients of the 1stFF

E = 〈xu,xu〉 = f2, F = 〈xu,xv〉 = 0 and G = 〈xu,xv〉 = ‖α′‖2.

Now we can calculate all the curvatures. The principal curvatures are

κ1 =
L

E
=
−fg′

f2‖α′‖
=
−g′

f‖α′‖
and κ2 =

N

G
=
f ′′g′ − f ′g′′

‖α′‖3
.

Hence, the Gauss and mean curvatures are

K = κ1κ2 =
LN

EG
=
−g′(f ′′g′ − f ′g′′)

f‖α′‖4
and

H =
1

2
(κ1 + κ2) =

−g′

2f
+
f ′′g′ − f ′g′′

2‖α′‖3
.

Example 9.14. Torus of revolution. Apply the above to the case f(v) = R + r cos(v/r) and g(v) =
r sin(v/r), 0 < r < R. Calculate the principal, Gauss curvature and mean curvatures.

We just calculate

f ′(v) = − sin(v/r), g′(v) = cos(v/r),

f ′′(v) = −1

r
cos(v/r), g′′(v) = −1

r
sin(v/r).

so that

κ1 =
−g′

f
=

cos

R+ r cos
and κ2 =

f ′′g′ − f ′g′′

f
= −1

r
(cos2 + sin2) = −1

r

since (f ′)2 + (g′)2 = 1 (the arguments of cos and sin in this formula are v/r). In particular, one principal
curvature is constant (it is the one coming from going around the torus along the small circle, i.e., in
direction xu). Moreover,

K = κ1κ2 =
cos

r(R+ r cos)
and H =

cos

2(R+ r cos)
− 1

2r
=

−R
2r(R+ r cos)

.

Note that the mean curvature never vanishes.

Definition 9.15.
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(a) Let S be a surface and K(p) its Gauss curvature at p ∈ S. We say that p is


elliptic K(p) > 0

hyperbolic if K(p) < 0

flat K(p) = 0

The subset


{ p ∈ S |K(p) > 0 } elliptic

{ p ∈ S |K(p) < 0 } is called hyperbolic region of S

{ p ∈ S |K(p) = 0 } flat

(b) Denote by κ1(p) and κ2(p) the principal curvatures at p ∈ S.

• We say that p is planar if κ1(p) = 0 and κ2(p) = 0;

• we say that p is umbilic if κ1(p) = κ2(p).

Example 9.16. (a) (Sphere) On a sphere S2(r), all points are elliptic and umbilic since both principal
curvatures are κ1(p) = κ2(p) = −1/r. The converse is also true (see Theorem 9.19).

(b) (Plane) It is not hard to see that if S is a plane (or an open subset of it) then all points of S are
planar. The converse is also true (see Theorem 9.19).

(c) (Hyperbolic paraboloid, Example 9.10) All points are hyperbolic (since K(p) < 0 for all p ∈ S), and
in particular, there are no umbilic points or flat points.

(d) (Torus of revolution, Example 9.14) We have K = 0 iff cos(v/r) = 0 i.e., if v/r = π/2 or v/r = 3π/2.
This is the circle on top and bottom of the torus; this is the flat region. The elliptic region is given
by points with K > 0, i.e., −π/2 < v/r < −π/2. The hyperbolic region is given by points with
K < 0, i.e., π/2 < v/r < 3π/2.

There are no umbilic points on the torus of revolution: |κ1| < 1/r, but κ2 = −1/r, so the two prin-
cipal curvatures cannot be the same. There are no planar points either κ2 = −1/r 6= 0 everywhere).

9.2 Some global theorems about curvature

Theorem 9.17. Every compact surface in R3 has at least one elliptic point.

Remark 9.18. The theorem is obviously false if either boundedness or closedness is dropped.

Theorem 9.19. Let S be a surface in R3.

(a) If all points of S are umbilic and K 6= 0 in at least one point of S then S is a part of a sphere.

(b) If all points of S are planar then S is part of a plane.

Theorem 9.20 (Conjecture of Carathéodory). Every compact surface in R3 (convex, homeomorphic to
a sphere) has at least two umbilic points.

This theorem has recently (2008) been proved (with additional smoothness assumptions) by Brendan
Guilfoyle and Wilhelm Klingenberg (Durham).

Definition 9.21. A surface S is minimal if the mean curvature H vanishes identically on S.
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