Differential Geometry III, Term 2 (Section 9)

9 Geometry of the Gauss map

9.1 The Weingarten map

Lemma 9.1. Let S be a surface in \mathbb{R}^{3} and $\boldsymbol{N}: S \longrightarrow S^{2}$ be its Gauss map. Then $d_{p} \boldsymbol{N}(\boldsymbol{w})$ is orthogonal to $\boldsymbol{N}(p)$ for every $\boldsymbol{w} \in T_{p} S$. In particular, we can identify $T_{\boldsymbol{N}(p)} S^{2}$ and $T_{p} S$, and consider $d_{p} \boldsymbol{N}$ as a map

$$
d_{p} N: T_{p} S \longrightarrow T_{p} S .
$$

Moreover, $d_{p} \boldsymbol{N}$ is symmetric, i.e.,

$$
\left\langle d_{p} \boldsymbol{N}\left(\boldsymbol{w}_{1}\right), \boldsymbol{w}_{2}\right\rangle=\left\langle\boldsymbol{w}_{1}, d_{p} \boldsymbol{N}\left(\boldsymbol{w}_{2}\right)\right\rangle
$$

for all $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in T_{p} S$.
Definition 9.2. (a) The map $-d_{p} \boldsymbol{N}: T_{p} S \longrightarrow T_{p} S$ is called the Weingarten map of the surface $S \subset \mathbb{R}^{3}$ at $p \in S$.
(b) The quadratic form $I I_{p}: T_{p} S \longrightarrow \mathbb{R}, I I_{p}(\boldsymbol{w})=\left\langle-d_{p} \boldsymbol{N}(\boldsymbol{w}), \boldsymbol{w}\right\rangle$, is called the second fundamental form of S at p.

Remark 9.3. Since $-d_{p} \boldsymbol{N}$ is symmetric, the Weingarten map is diagonalizable in an orthogonal basis of $T_{p} S$.

Since $-d_{p} \boldsymbol{N}$ is now a linear operator on the tangent space $T_{p} S$, we can calculate its characteristic polynomial, trace, determinant and eigenvalues (these do not depend on a basis).

Definition 9.4. Let S be a regular surface in \mathbb{R}^{3} with Gauss map $\boldsymbol{N}: S \longrightarrow S^{2}$ and Weingarten map $-d_{p} \boldsymbol{N}: T_{p} S \longrightarrow T_{p} S$ at $p \in S$.
(a) $K(p)=\operatorname{det}\left(-d_{p} \boldsymbol{N}\right)$ is called the Gauss curvature of S at p.
(b) $H(p)=\frac{1}{2} \operatorname{tr}\left(-d_{p} \boldsymbol{N}\right)$ is called the mean curvature of S at p.
(c) The eigenvalues $\kappa_{1}(p), \kappa_{2}(p)$ of $-d_{p} \boldsymbol{N}$ are called principal curvatures of S at p.
(d) The eigenvectors $\boldsymbol{e}_{1}(p), \boldsymbol{e}_{2}(p)$ of $-d_{p} \boldsymbol{N}$ are called principal directions of S at p (i.e., $-d_{p} \boldsymbol{N}\left(\boldsymbol{e}_{i}(p)\right)=$ $\left.\kappa_{i}(p) \boldsymbol{e}_{i}(p)\right)$.

Remark 9.5. Obviously, we have

$$
K(p)=\kappa_{1}(p) \kappa_{2}(p), \quad H(p)=\frac{1}{2}\left(\kappa_{1}(p)+\kappa_{2}(p)\right) .
$$

Example 9.6 (Sphere). Let $S=S^{2}(r)$ for some $r>0$ be a sphere. The normal vector at $\boldsymbol{p} \in S$ is given by

$$
\boldsymbol{N}(\boldsymbol{p})=\frac{1}{r} p
$$

Thus, the Weingarten map is a scalar operator

$$
-d_{\boldsymbol{p}} \boldsymbol{N}(\boldsymbol{w})=-\frac{1}{r} \boldsymbol{w}
$$

In particular, the second fundamental form is

$$
I I_{p}(\boldsymbol{w})=\left\langle-d_{p} \boldsymbol{N}(\boldsymbol{w}), \boldsymbol{w}\right\rangle=-\frac{1}{r}\|\boldsymbol{w}\|^{2}
$$

Moreover, the eigenvalues are $\kappa_{1}(p)=\kappa_{2}(p)=-1 / r$, the Gauss curvature is $K(p)=1 / r^{2}$ and the mean curvature is $H(p)=-1 / r$.

Definition 9.7. Let S be a regular surface in \mathbb{R}^{3} with Gauss map $\boldsymbol{N}: S \longrightarrow S^{2}$, and let $\boldsymbol{x}: U \longrightarrow S$ be a local parametrization. We call

$$
L=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}, \quad M=\boldsymbol{x}_{u v} \cdot \boldsymbol{N} \quad \text { and } \quad N=\boldsymbol{x}_{v v} \cdot \boldsymbol{N}
$$

the coefficients of the second fundamental form.
Proposition 9.8. L, M, N are indeed the coefficients of $I I_{p}$ in the basis $\left\{\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\}$, i.e.

$$
I_{p}\left(a \boldsymbol{x}_{u}+b \boldsymbol{x}_{v}\right)=a^{2} L+2 a b M+b^{2} N
$$

Computing the matrix of the Weingarten map in the basis $\left\{\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\}$ gives a matrix

$$
-d_{p} \boldsymbol{N}=\frac{1}{E G-F^{2}}\left(\begin{array}{cc}
G L-F M & G M-F N \\
-F L+E M & -F M+E N
\end{array}\right),
$$

which results in the following.
Proposition 9.9.

$$
K=\frac{L N-M^{2}}{E G-F^{2}}, \quad H=\frac{1}{2} \frac{E N-2 F M+G L}{E G-F^{2}}
$$

Example 9.10. Hyperbolic paraboloid.

Let $S:=\left\{(x, y, z) \mid x^{2}-y^{2}+z=0\right\}$. It may be parametrized as a graph of a function $z=f(x, y)=$ $y^{2}-x^{2}$, i.e., $\boldsymbol{x}(u, v)=\left(u, v, v^{2}-u^{2}\right)$ for $(u, v) \in U=\mathbb{R}^{2}$. Then

$$
\begin{aligned}
\boldsymbol{x}_{u} & =(1,0,-2 u), \quad \boldsymbol{x}_{v}=(0,1,2 v), \\
\boldsymbol{x}_{u u} & =(0,0,-2), \quad \boldsymbol{x}_{u v}=(0,0,0), \quad \boldsymbol{x}_{v v}=(0,0,2) .
\end{aligned}
$$

We also need the normal and calculate

$$
\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}=(2 u,-2 v, 1),
$$

which has norm $D=\left(4 u^{2}+4 v^{2}+1\right)^{1 / 2}$, hence

$$
\boldsymbol{N} \circ \boldsymbol{x}=\frac{1}{D}(2 u,-2 v, 1) .
$$

The coefficients of the $1^{\text {st }} \mathrm{FF}$ and $2^{\text {nd }} \mathrm{FF}$ are

$$
\begin{aligned}
& E=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{u}=1+4 u^{2}, \quad F=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{v}=-4 u v, \quad G=\boldsymbol{x}_{v} \cdot \boldsymbol{x}_{v}=1+4 v^{2} \\
& L=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}=\frac{-2}{D}, \quad M=\boldsymbol{x}_{u v} \cdot \boldsymbol{N}=0, \quad N=\boldsymbol{x}_{v v} \cdot \boldsymbol{N}=\frac{2}{D} .
\end{aligned}
$$

Now,

$$
E G-F^{2}=\left(1+4 u^{2}\right)\left(1+4 v^{2}\right)-16 u^{2} v^{2}=1+4 u^{2}+4 v^{2}=D^{2} \quad \text { and } \quad L N-M^{2}=\frac{-4}{D^{2}},
$$

so that the Gauss curvature is

$$
K=\frac{L N-M^{2}}{E G-F^{2}}=\frac{-4}{D^{4}}<0
$$

and the mean curvature is

$$
H=\frac{E N+G L}{2\left(E G-F^{2}\right)}=\frac{\left(1+4 u^{2}\right)-\left(1+4 v^{2}\right)}{D^{3}}=\frac{4\left(u^{2}-v^{2}\right)}{D^{3}} .
$$

Let us calculate the principal curvatures at $\boldsymbol{x}(0,0)=(0,0,0)$ (i.e., $(u, v)=(0,0))$. Here, $K=-4$ and $H=0$, hence we look for the roots κ of

$$
\kappa^{2}-2 H \kappa+K=0, \quad \text { or }, \quad \kappa^{2}-4=0,
$$

i.e., $\kappa_{1}=2$ and $\kappa_{2}=-2$.

Definition 9.11. A parametrization \boldsymbol{x} with $F=0$ is called orthogonal, a parametrization \boldsymbol{x} with $F=0$ and $M=0$ is called principal.

Proposition 9.12. Assume that the parametrization \boldsymbol{x} of a surface is principal (i.e., $F=0$ and $M=0$), then \boldsymbol{x}_{u} and \boldsymbol{x}_{v} are the principal directions. Moreover, the principal curvatures are

$$
\kappa_{1}=\frac{L}{E} \quad \text { and } \quad \kappa_{2}=\frac{N}{G} .
$$

Hence, the Gauss and mean curvatures are

$$
K=\kappa_{1} \kappa_{2}=\frac{L N}{E G} \quad \text { and } \quad H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)=\frac{G L+E N}{2 E G} .
$$

Example 9.13. Surface of revolution. Let S be obtained by rotating the curve given by $\boldsymbol{\alpha}(v)=$ $(f(v), 0, g(v)), v \in I$ (some open interval) around the z-axis. Let us assume that $f(v)>0$. A local parametrization is then given by

$$
\boldsymbol{x}(u, v)=\left(\begin{array}{c}
f(v) \cos u \\
f(v) \sin u \\
g(v)
\end{array}\right)
$$

for $(u, v) \in U_{1}=(0,2 \pi) \times I$ (and $(u, v) \in U_{2}=(-\pi, \pi) \times I$ to cover the surface entirely). The derivatives are

$$
\boldsymbol{x}_{u}=\left(\begin{array}{c}
-f(v) \sin u \\
f(v) \cos u \\
0
\end{array}\right) \quad \text { and } \quad \boldsymbol{x}_{v}=\left(\begin{array}{c}
f^{\prime}(v) \cos u \\
f^{\prime}(v) \sin u \\
g^{\prime}(v)
\end{array}\right) .
$$

For the coefficients of the second fundamental form, we also need the second derivatives of \boldsymbol{x} :

$$
\boldsymbol{x}_{u u}=\left(\begin{array}{c}
-f(v) \cos u \\
-f(v) \sin u \\
0
\end{array}\right), \quad \boldsymbol{x}_{u v}=\boldsymbol{x}_{v u}=\left(\begin{array}{c}
-f^{\prime}(v) \sin u \\
f^{\prime}(v) \cos u \\
0
\end{array}\right) \quad \text { and } \quad \boldsymbol{x}_{v v}=\left(\begin{array}{c}
f^{\prime \prime}(v) \cos u \\
f^{\prime \prime}(v) \sin u \\
g^{\prime \prime}(v)
\end{array}\right)
$$

The normal vector at $p=\boldsymbol{x}(u, v)$ is

$$
\boldsymbol{N}(p)=\left(\frac{1}{\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|} \boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right)(u, v)=\frac{1}{\boldsymbol{\alpha}^{\prime}(v)}\left(\begin{array}{c}
g^{\prime}(v) \cos u \\
g^{\prime}(v) \sin u \\
-f^{\prime}(v)
\end{array}\right),
$$

where $\left\|\boldsymbol{\alpha}^{\prime}(v)\right\|=\left(f^{\prime}(v)^{2}+g^{\prime}(v)^{2}\right)^{1 / 2}$. Now, the coefficients of the second fundamental form are

$$
\begin{aligned}
& L=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}=\frac{-f g^{\prime}}{\left\|\boldsymbol{\alpha}^{\prime}\right\|}, \quad M=\boldsymbol{x}_{u v} \cdot \boldsymbol{N}=0 \quad \text { and } \\
& N=\boldsymbol{x}_{v v} \cdot \boldsymbol{N}=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\left\|\boldsymbol{\alpha}^{\prime}\right\|}
\end{aligned}
$$

The coefficients of the $1^{\text {st }} \mathrm{FF}$

$$
E=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right\rangle=f^{2}, \quad F=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle=0 \quad \text { and } \quad G=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle=\left\|\boldsymbol{\alpha}^{\prime}\right\|^{2} .
$$

Now we can calculate all the curvatures. The principal curvatures are

$$
\kappa_{1}=\frac{L}{E}=\frac{-f g^{\prime}}{f^{2}\left\|\boldsymbol{\alpha}^{\prime}\right\|}=\frac{-g^{\prime}}{f\left\|\boldsymbol{\alpha}^{\prime}\right\|} \quad \text { and } \quad \kappa_{2}=\frac{N}{G}=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{\left\|\boldsymbol{\alpha}^{\prime}\right\|^{3}}
$$

Hence, the Gauss and mean curvatures are

$$
\begin{aligned}
& K=\kappa_{1} \kappa_{2}=\frac{L N}{E G}=\frac{-g^{\prime}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{f\left\|\boldsymbol{\alpha}^{\prime}\right\|^{4}} \text { and } \\
& H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)=\frac{-g^{\prime}}{2 f}+\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{2\left\|\boldsymbol{\alpha}^{\prime}\right\|^{3}} .
\end{aligned}
$$

Example 9.14. Torus of revolution. Apply the above to the case $f(v)=R+r \cos (v / r)$ and $g(v)=$ $r \sin (v / r), 0<r<R$. Calculate the principal, Gauss curvature and mean curvatures.

We just calculate

$$
\begin{aligned}
f^{\prime}(v) & =-\sin (v / r), & g^{\prime}(v) & =\cos (v / r), \\
f^{\prime \prime}(v) & =-\frac{1}{r} \cos (v / r), & g^{\prime \prime}(v) & =-\frac{1}{r} \sin (v / r)
\end{aligned}
$$

so that

$$
\kappa_{1}=\frac{-g^{\prime}}{f}=\frac{\cos }{R+r \cos } \quad \text { and } \quad \kappa_{2}=\frac{f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}}{f}=-\frac{1}{r}\left(\cos ^{2}+\sin ^{2}\right)=-\frac{1}{r}
$$

since $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$ (the arguments of cos and sin in this formula are v / r). In particular, one principal curvature is constant (it is the one coming from going around the torus along the small circle, i.e., in direction \boldsymbol{x}_{u}). Moreover,

$$
K=\kappa_{1} \kappa_{2}=\frac{\cos }{r(R+r \cos)} \quad \text { and } \quad H=\frac{\cos }{2(R+r \cos)}-\frac{1}{2 r}=\frac{-R}{2 r(R+r \cos)} .
$$

Note that the mean curvature never vanishes.

Definition 9.15.

(a) Let S be a surface and $K(p)$ its Gauss curvature at $p \in S$. We say that p is

$$
\begin{array}{cc}
\qquad\left\{\begin{array}{lc}
\text { elliptic } & \\
\text { hyperbolic } & \text { if } \\
\text { flat } & K(p)>0 \\
K(p)<0 \\
K(p)=0
\end{array}\right. \\
\text { The subset } & \left\{\begin{array}{lll}
\{p \in S \mid K(p)>0\} \\
\{p \in S \mid K(p)<0\} \\
\{p \in S \mid K(p)=0\}
\end{array}\right. \\
\text { is called } & \text { elliptic } \\
\text { hyperbolic } & \text { region of } S
\end{array}
$$

(b) Denote by $\kappa_{1}(p)$ and $\kappa_{2}(p)$ the principal curvatures at $p \in S$.

- We say that p is planar if $\kappa_{1}(p)=0$ and $\kappa_{2}(p)=0$;
- we say that p is umbilic if $\kappa_{1}(p)=\kappa_{2}(p)$.

Example 9.16. (a) (Sphere) On a sphere $S^{2}(r)$, all points are elliptic and umbilic since both principal curvatures are $\kappa_{1}(p)=\kappa_{2}(p)=-1 / r$. The converse is also true (see Theorem 9.19).
(b) (Plane) It is not hard to see that if S is a plane (or an open subset of it) then all points of S are planar. The converse is also true (see Theorem 9.19).
(c) (Hyperbolic paraboloid, Example 9.10) All points are hyperbolic (since $K(p)<0$ for all $p \in S$), and in particular, there are no umbilic points or flat points.
(d) (Torus of revolution, Example 9.14) We have $K=0$ iff $\cos (v / r)=0$ i.e., if $v / r=\pi / 2$ or $v / r=3 \pi / 2$. This is the circle on top and bottom of the torus; this is the flat region. The elliptic region is given by points with $K>0$, i.e., $-\pi / 2<v / r<-\pi / 2$. The hyperbolic region is given by points with $K<0$, i.e., $\pi / 2<v / r<3 \pi / 2$.
There are no umbilic points on the torus of revolution: $\left|\kappa_{1}\right|<1 / r$, but $\kappa_{2}=-1 / r$, so the two principal curvatures cannot be the same. There are no planar points either $\kappa_{2}=-1 / r \neq 0$ everywhere).

9.2 Some global theorems about curvature

Theorem 9.17. Every compact surface in \mathbb{R}^{3} has at least one elliptic point.
Remark 9.18. The theorem is obviously false if either boundedness or closedness is dropped.
Theorem 9.19. Let S be a surface in \mathbb{R}^{3}.
(a) If all points of S are umbilic and $K \neq 0$ in at least one point of S then S is a part of a sphere.
(b) If all points of S are planar then S is part of a plane.

Theorem 9.20 (Conjecture of Carathéodory). Every compact surface in \mathbb{R}^{3} (convex, homeomorphic to a sphere) has at least two umbilic points.

This theorem has recently (2008) been proved (with additional smoothness assumptions) by Brendan Guilfoyle and Wilhelm Klingenberg (Durham).

Definition 9.21. A surface S is minimal if the mean curvature H vanishes identically on S.

