Durham University Pavel Tumarkin

Differential Geometry III, Term 2 (Section 9)

9 Geometry of the Gauss map

9.1 The Weingarten map

Lemma 9.1. Let S be a surface in \mathbb{R}^3 and $N: S \longrightarrow S^2$ be its Gauss map. Then $d_p N(w)$ is orthogonal to N(p) for every $w \in T_p S$. In particular, we can identify $T_{N(p)}S^2$ and $T_p S$, and consider $d_p N$ as a map

$$d_p N: T_p S \longrightarrow T_p S.$$

Moreover, $d_p N$ is symmetric, i.e.,

$$\langle d_p \boldsymbol{N}(\boldsymbol{w}_1), \boldsymbol{w}_2 \rangle = \langle \boldsymbol{w}_1, d_p \boldsymbol{N}(\boldsymbol{w}_2) \rangle$$

for all $\boldsymbol{w}_1, \boldsymbol{w}_2 \in T_p S$.

- **Definition 9.2.** (a) The map $-d_p N \colon T_p S \longrightarrow T_p S$ is called the *Weingarten map* of the surface $S \subset \mathbb{R}^3$ at $p \in S$.
 - (b) The quadratic form $\Pi_p: T_pS \longrightarrow \mathbb{R}$, $\Pi_p(\boldsymbol{w}) = \langle -d_p \boldsymbol{N}(\boldsymbol{w}), \boldsymbol{w} \rangle$, is called the *second fundamental* form of S at p.

Remark 9.3. Since $-d_p N$ is symmetric, the Weingarten map is diagonalizable in an orthogonal basis of $T_p S$.

Since $-d_p \mathbf{N}$ is now a linear operator on the tangent space $T_p S$, we can calculate its characteristic polynomial, trace, determinant and eigenvalues (these do not depend on a basis).

Definition 9.4. Let S be a regular surface in \mathbb{R}^3 with Gauss map $N: S \longrightarrow S^2$ and Weingarten map $-d_p N: T_p S \longrightarrow T_p S$ at $p \in S$.

- (a) $K(p) = \det(-d_p \mathbf{N})$ is called the Gauss curvature of S at p.
- (b) $H(p) = \frac{1}{2} \operatorname{tr} (-d_p \mathbf{N})$ is called the mean curvature of S at p.
- (c) The eigenvalues $\kappa_1(p)$, $\kappa_2(p)$ of $-d_p N$ are called *principal curvatures* of S at p.
- (d) The eigenvectors $\boldsymbol{e}_1(p)$, $\boldsymbol{e}_2(p)$ of $-d_p \boldsymbol{N}$ are called *principal directions* of S at p (i.e., $-d_p \boldsymbol{N}(\boldsymbol{e}_i(p)) = \kappa_i(p)\boldsymbol{e}_i(p)$).

Remark 9.5. Obviously, we have

$$K(p) = \kappa_1(p)\kappa_2(p), \quad H(p) = \frac{1}{2}(\kappa_1(p) + \kappa_2(p)).$$

Example 9.6 (Sphere). Let $S = S^2(r)$ for some r > 0 be a sphere. The normal vector at $p \in S$ is given by

$$N(p) = \frac{1}{r} p.$$

Thus, the Weingarten map is a scalar operator

$$-d_{\boldsymbol{p}}\boldsymbol{N}(\boldsymbol{w}) = -\frac{1}{r} \boldsymbol{w}.$$

In particular, the second fundamental form is

$$II_p(\boldsymbol{w}) = \langle -d_p \boldsymbol{N}(\boldsymbol{w}), \boldsymbol{w} \rangle = -\frac{1}{r} \|\boldsymbol{w}\|^2.$$

Moreover, the eigenvalues are $\kappa_1(p) = \kappa_2(p) = -1/r$, the Gauss curvature is $K(p) = 1/r^2$ and the mean curvature is H(p) = -1/r.

Definition 9.7. Let S be a regular surface in \mathbb{R}^3 with Gauss map $N: S \longrightarrow S^2$, and let $x: U \longrightarrow S$ be a local parametrization. We call

$$L = x_{uu} \cdot N, \qquad M = x_{uv} \cdot N \quad \text{and} \quad N = x_{vv} \cdot N$$

the coefficients of the second fundamental form.

Proposition 9.8. L, M, N are indeed the coefficients of H_p in the basis $\{x_u, x_v\}$, i.e.

$$H_p(a\boldsymbol{x}_u + b\boldsymbol{x}_v) = a^2L + 2abM + b^2N$$

Computing the matrix of the Weingarten map in the basis $\{x_u, x_v\}$ gives a matrix

$$-d_p \mathbf{N} = \frac{1}{EG - F^2} \begin{pmatrix} GL - FM & GM - FN \\ -FL + EM & -FM + EN \end{pmatrix},$$

which results in the following.

Proposition 9.9.

$$K = \frac{LN - M^2}{EG - F^2}, \qquad H = \frac{1}{2} \frac{EN - 2FM + GL}{EG - F^2}$$

Example 9.10. Hyperbolic paraboloid.

Let $S := \{ (x, y, z) | x^2 - y^2 + z = 0 \}$. It may be parametrized as a graph of a function $z = f(x, y) = y^2 - x^2$, i.e., $\mathbf{x}(u, v) = (u, v, v^2 - u^2)$ for $(u, v) \in U = \mathbb{R}^2$. Then

$$egin{aligned} & m{x}_u = (1,0,-2u), & m{x}_v = (0,1,2v), \ & m{x}_{uu} = (0,0,-2), & m{x}_{uv} = (0,0,0), & m{x}_{vv} = (0,0,2) \end{aligned}$$

We also need the normal and calculate

$$\boldsymbol{x}_u \times \boldsymbol{x}_v = (2u, -2v, 1),$$

which has norm $D = (4u^2 + 4v^2 + 1)^{1/2}$, hence

$$\boldsymbol{N} \circ \boldsymbol{x} = \frac{1}{D}(2u, -2v, 1).$$

The coefficients of the $1^{st}FF$ and $2^{nd}FF$ are

$$E = \boldsymbol{x}_u \cdot \boldsymbol{x}_u = 1 + 4u^2, \quad F = \boldsymbol{x}_u \cdot \boldsymbol{x}_v = -4uv, \quad G = \boldsymbol{x}_v \cdot \boldsymbol{x}_v = 1 + 4v^2$$
$$L = \boldsymbol{x}_{uu} \cdot \boldsymbol{N} = \frac{-2}{D}, \quad M = \boldsymbol{x}_{uv} \cdot \boldsymbol{N} = 0, \quad N = \boldsymbol{x}_{vv} \cdot \boldsymbol{N} = \frac{2}{D}.$$

Now,

$$EG - F^2 = (1 + 4u^2)(1 + 4v^2) - 16u^2v^2 = 1 + 4u^2 + 4v^2 = D^2$$
 and $LN - M^2 = \frac{-4}{D^2}$,

so that the Gauss curvature is

$$K = \frac{LN - M^2}{EG - F^2} = \frac{-4}{D^4} < 0$$

and the mean curvature is

$$H = \frac{EN + GL}{2(EG - F^2)} = \frac{(1 + 4u^2) - (1 + 4v^2)}{D^3} = \frac{4(u^2 - v^2)}{D^3}.$$

Let us calculate the principal curvatures at $\boldsymbol{x}(0,0) = (0,0,0)$ (i.e., (u,v) = (0,0)). Here, K = -4 and H = 0, hence we look for the roots κ of

$$\kappa^2 - 2H\kappa + K = 0$$
, or, $\kappa^2 - 4 = 0$,

i.e., $\kappa_1 = 2$ and $\kappa_2 = -2$.

Definition 9.11. A parametrization x with F = 0 is called *orthogonal*, a parametrization x with F = 0 and M = 0 is called *principal*.

Proposition 9.12. Assume that the parametrization \boldsymbol{x} of a surface is principal (i.e., F = 0 and M = 0), then \boldsymbol{x}_u and \boldsymbol{x}_v are the principal directions. Moreover, the principal curvatures are

$$\kappa_1 = \frac{L}{E} \quad \text{and} \quad \kappa_2 = \frac{N}{G}.$$

Hence, the Gauss and mean curvatures are

$$K = \kappa_1 \kappa_2 = \frac{LN}{EG}$$
 and $H = \frac{1}{2}(\kappa_1 + \kappa_2) = \frac{GL + EN}{2EG}$.

Example 9.13. Surface of revolution. Let S be obtained by rotating the curve given by $\alpha(v) = (f(v), 0, g(v)), v \in I$ (some open interval) around the z-axis. Let us assume that f(v) > 0. A local parametrization is then given by

$$\boldsymbol{x}(u,v) = \begin{pmatrix} f(v)\cos u\\ f(v)\sin u\\ g(v) \end{pmatrix}$$

for $(u, v) \in U_1 = (0, 2\pi) \times I$ (and $(u, v) \in U_2 = (-\pi, \pi) \times I$ to cover the surface entirely). The derivatives are

$$\boldsymbol{x}_{u} = \begin{pmatrix} -f(v)\sin u\\ f(v)\cos u\\ 0 \end{pmatrix}$$
 and $\boldsymbol{x}_{v} = \begin{pmatrix} f'(v)\cos u\\ f'(v)\sin u\\ g'(v) \end{pmatrix}$.

For the coefficients of the second fundamental form, we also need the second derivatives of x:

$$\boldsymbol{x}_{uu} = \begin{pmatrix} -f(v)\cos u \\ -f(v)\sin u \\ 0 \end{pmatrix}, \quad \boldsymbol{x}_{uv} = \boldsymbol{x}_{vu} = \begin{pmatrix} -f'(v)\sin u \\ f'(v)\cos u \\ 0 \end{pmatrix} \quad \text{and} \quad \boldsymbol{x}_{vv} = \begin{pmatrix} f''(v)\cos u \\ f''(v)\sin u \\ g''(v) \end{pmatrix}.$$

The normal vector at $p = \boldsymbol{x}(u, v)$ is

$$\boldsymbol{N}(p) = \left(\frac{1}{\|\boldsymbol{x}_u \times \boldsymbol{x}_v\|} \boldsymbol{x}_u \times \boldsymbol{x}_v\right)(u, v) = \frac{1}{\boldsymbol{\alpha}'(v)} \begin{pmatrix} g'(v) \cos u \\ g'(v) \sin u \\ -f'(v) \end{pmatrix},$$

where $\|\boldsymbol{\alpha}'(v)\| = (f'(v)^2 + g'(v)^2)^{1/2}$. Now, the coefficients of the second fundamental form are

$$L = \boldsymbol{x}_{uu} \cdot \boldsymbol{N} = rac{-fg'}{\|\boldsymbol{lpha}'\|}, \qquad M = \boldsymbol{x}_{uv} \cdot \boldsymbol{N} = 0 \quad ext{and}$$
 $N = \boldsymbol{x}_{vv} \cdot \boldsymbol{N} = rac{f''g' - f'g''}{\|\boldsymbol{lpha}'\|}.$

The coefficients of the $1^{st}FF$

$$E = \langle \boldsymbol{x}_u, \boldsymbol{x}_u \rangle = f^2, \quad F = \langle \boldsymbol{x}_u, \boldsymbol{x}_v \rangle = 0 \quad \text{and} \quad G = \langle \boldsymbol{x}_u, \boldsymbol{x}_v \rangle = \| \boldsymbol{\alpha}' \|^2.$$

Now we can calculate all the curvatures. The principal curvatures are

$$\kappa_1 = \frac{L}{E} = \frac{-fg'}{f^2 \| \alpha' \|} = \frac{-g'}{f \| \alpha' \|} \quad \text{and} \quad \kappa_2 = \frac{N}{G} = \frac{f''g' - f'g''}{\| \alpha' \|^3}.$$

Hence, the Gauss and mean curvatures are

$$K = \kappa_1 \kappa_2 = \frac{LN}{EG} = \frac{-g'(f''g' - f'g'')}{f \|\alpha'\|^4} \text{ and}$$
$$H = \frac{1}{2}(\kappa_1 + \kappa_2) = \frac{-g'}{2f} + \frac{f''g' - f'g''}{2\|\alpha'\|^3}.$$

Example 9.14. Torus of revolution. Apply the above to the case $f(v) = R + r \cos(v/r)$ and $g(v) = r \sin(v/r)$, 0 < r < R. Calculate the principal, Gauss curvature and mean curvatures.

We just calculate

$$\begin{aligned} f'(v) &= -\sin(v/r), & g'(v) &= \cos(v/r), \\ f''(v) &= -\frac{1}{r}\cos(v/r), & g''(v) &= -\frac{1}{r}\sin(v/r). \end{aligned}$$

so that

$$\kappa_1 = \frac{-g'}{f} = \frac{\cos}{R + r\cos}$$
 and $\kappa_2 = \frac{f''g' - f'g''}{f} = -\frac{1}{r}(\cos^2 + \sin^2) = -\frac{1}{r}(\cos^2 + \sin^2$

since $(f')^2 + (g')^2 = 1$ (the arguments of cos and sin in this formula are v/r). In particular, one principal curvature is constant (it is the one coming from going around the torus along the small circle, i.e., in direction x_u). Moreover,

$$K = \kappa_1 \kappa_2 = \frac{\cos}{r(R+r\cos)}$$
 and $H = \frac{\cos}{2(R+r\cos)} - \frac{1}{2r} = \frac{-R}{2r(R+r\cos)}$.

Note that the mean curvature never vanishes.

Definition 9.15.

(a) Let S be a surface and K(p) its Gauss curvature at $p \in S$. We say that p is

	$\begin{cases} elliptic \\ hyperbolic \\ flat \end{cases}$	K if K K	(p) > 0 (p) < 0 (p) = 0	
The subset	$\begin{cases} \{ p \in S K(p) > 0 \} \\ \{ p \in S K(p) < 0 \} \\ \{ p \in S K(p) = 0 \} \end{cases}$	is called	elliptic hyperbolic flat	region of S

- (b) Denote by $\kappa_1(p)$ and $\kappa_2(p)$ the principal curvatures at $p \in S$.
 - We say that p is planar if $\kappa_1(p) = 0$ and $\kappa_2(p) = 0$;
 - we say that p is *umbilic* if $\kappa_1(p) = \kappa_2(p)$.
- **Example 9.16.** (a) (Sphere) On a sphere $S^2(r)$, all points are elliptic and umbilic since both principal curvatures are $\kappa_1(p) = \kappa_2(p) = -1/r$. The converse is also true (see Theorem 9.19).
 - (b) (Plane) It is not hard to see that if S is a plane (or an open subset of it) then all points of S are planar. The converse is also true (see Theorem 9.19).
 - (c) (Hyperbolic paraboloid, Example 9.10) All points are hyperbolic (since K(p) < 0 for all $p \in S$), and in particular, there are no umbilic points or flat points.
 - (d) (Torus of revolution, Example 9.14) We have K = 0 iff $\cos(v/r) = 0$ i.e., if $v/r = \pi/2$ or $v/r = 3\pi/2$. This is the circle on top and bottom of the torus; this is the *flat region*. The *elliptic region* is given by points with K > 0, i.e., $-\pi/2 < v/r < -\pi/2$. The *hyperbolic region* is given by points with K < 0, i.e., $\pi/2 < v/r < 3\pi/2$.

There are no umbilic points on the torus of revolution: $|\kappa_1| < 1/r$, but $\kappa_2 = -1/r$, so the two principal curvatures cannot be the same. There are no planar points either $\kappa_2 = -1/r \neq 0$ everywhere).

9.2 Some global theorems about curvature

Theorem 9.17. Every compact surface in \mathbb{R}^3 has at least one elliptic point.

Remark 9.18. The theorem is obviously false if either boundedness or closedness is dropped.

Theorem 9.19. Let S be a surface in \mathbb{R}^3 .

- (a) If all points of S are umbilic and $K \neq 0$ in at least one point of S then S is a part of a sphere.
- (b) If all points of S are planar then S is part of a plane.

Theorem 9.20 (Conjecture of Carathéodory). Every compact surface in \mathbb{R}^3 (convex, homeomorphic to a sphere) has at least two umbilic points.

This theorem has recently (2008) been proved (with additional smoothness assumptions) by Brendan Guilfoyle and Wilhelm Klingenberg (Durham).

Definition 9.21. A surface S is *minimal* if the mean curvature H vanishes identically on S.