SINGLE MATHS A (MATH 1561) Matrices terminology - for reference

Here's a quick guide to some of the definitions and a few results for matrices.

Basic definitions:

- An $M \times N$ matrix A is an array of M rows and N columns of numbers. The numbers are called matrix elements or entries. The element a_{ij} is in the *i*th row and *j*th column.
- A square matrix has the same number of rows and columns.
- In matrix multiplication P = AB, we multiply rows of A by columns of B. The product is only defined if A is $M \times N$ and B is $N \times L$; P is then an $M \times L$ matrix. In components,

$$P_{ij} = \sum_{k=1}^{N} a_{ik} b_{kj}$$

- The multiplication is not **commutative**, that is $AB \neq BA$ in general.
- The identity is a square matrix I with components $I_{ij} = \delta_{ij}$. It is the identity element for matrix multiplication: AI = IA = A for any matrix A (whenever the product is defined).
- The transpose interchanges rows and columns. If A has elements a_{ij} , the transpose A^T has elements $A_{ij}^T = a_{ji}$.
- The Hermitian conjugate is the complex conjugate of the transpose. If A has elements a_{ij} , the Hermitian conjugate A^{\dagger} has elements $A_{ij}^{\dagger} = a_{ji}^{*}$.
- A system of linear equations can be written as $A\mathbf{x} = \mathbf{b}$, where \mathbf{x} , \mathbf{b} are vectors, that is, for our purposes $N \times 1$ matrices. (Row vectors \mathbf{x}^T are $1 \times N$ matrices).
- A homogeneous system has b = 0, so Ax = 0. The solution of a homogeneous system is said to be in the kernel of A. Homogeneous systems always have at least one solution, x = 0.

Determinant and inverse:

- The trace of a square matrix A is the sum of the diagonal entries: $tr(A) = \sum_{i=1}^{N} a_{ii}$. The trace of a product of matrices is invariant under cyclic permutations, e.g. tr(ABC) = tr(CAB).
- The determinant of a square matrix A is written det(A) or |A|. It can be defined iteratively:
 - For a 2×2 matrix A, $det(A) = a_{11}a_{22} a_{12}a_{21}$.
 - The **minor** M_{ij} of a matrix A is the determinant of the $(N-1) \times (N-1)$ matrix formed by removing the *i*th row and *j*th column of A.
 - The cofactor $C_{ij} = (-1)^{i+j} M_{ij}$.
 - The determinant of A is then obtained by taking the sum over any row or column in A of the product of the elements and their cofactors:

$$\det(A) = \sum_{j=1}^{N} a_{ij} C_{ij}, \text{ for any } i = 1 \dots N,$$

or

$$\det(A) = \sum_{i=1}^{N} a_{ij} C_{ij}, \quad \text{for any} \quad j = 1 \dots N$$

- Properties of the determinant:
 - $|A^{T}| = |A|; |A^{\dagger}| = |A|^{*}.$
 - -|AB| = |A||B|.
 - If two rows of A are interchanged to obtain A', |A'| = -|A|.
 - Hence if two rows or columns of A are identical, |A| = 0.
 - If a row or column of A is added to another row or column, the determinant is unchanged.
 - If a row of A is multiplied by a number λ to obtain A', $|A'| = \lambda |A|$.
 - Hence $|\lambda A| = \lambda^N |A|$, where λ is a number.
- If |A| = 0, A is singular; if $|A| \neq 0$, A is non-singular. For non-singular matrices, the kernel is just x = 0.
- The **rank** is the number of rows or columns of a general $M \times N$ matrix which are linearly independent; it is equal to the dimension of the largest square submatrix with a non-zero determinant.
- The **inverse** of a non-singular square matrix A is a matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I.$$

Note that singular matrices and matrices which are not square do not have inverses.

• The inverse is given by $A^{-1} = |A|^{-1}C^T$, where C is the matrix of cofactors of elements of A.

Special matrices:

- A diagonal matrix has $a_{ij} = 0$ if $i \neq j$.
- An upper triangular matrix has $a_{ij} = 0$ if i > j.
- A lower triangular matrix has $a_{ij} = 0$ if i < j.
- A symmetric matrix has $A^T = A$. Similarly an anti-symmetric matrix has $A^T = -A$.
- A Hermitian matrix has $A^{\dagger} = A$. Similarly an anti-Hermitian matrix has $A^{\dagger} = -A$.
- An orthogonal matrix has $A^T = A^{-1}$. Note this implies $det(A) = \pm 1$.
- A unitary matrix has $A^{\dagger} = A^{-1}$. Note this implies det(A) has unit modulus.
- A normal matrix has $A^{\dagger}A = AA^{\dagger}$. Hermitian and unitary matrices are normal.

Eigenvalues and eigenvectors:

- If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of the matrix A with **eigenvalue** λ .
- The eigenvalues λ_i are the roots of the **characteristic equation**: det $(A \lambda I) = 0$. This is an Nth order polynomial equation, so in general it will have N complex solutions.
- If the characteristic equation has repeated roots, so the eigenvalues are not all distinct, that is $\lambda_i = \lambda_j$ for some *i*, *j*, these eigenvalues are called **degenerate**.
- For non-degenerate eigenvalues, the corresponding eigenvectors are linearly independent.
- A defective matrix is one which has less than N linearly independent eigenvectors.
- If A has N linearly independent eigenvectors \mathbf{x}_i , then $S^{-1}AS$ is diagonal when S is the matrix whose columns are these eigenvectors, that is $S = (\mathbf{x}_1 \dots \mathbf{x}_N)$.
- The vectors \boldsymbol{x}_i are orthogonal if $\boldsymbol{x}_i^T \boldsymbol{x}_j = \delta_{ij}$.
- If the x_i are orthogonal, then the matrix S formed above is orthogonal.