
Lecture 10

Taylor series and limits

Taylor series can be used to calculate limits of the form

lim
x→a

f(x)

g(x)
,

where both f(x) and g(x) go to 0 as x → a. Sometimes, but not always, l’Hôpital’s rule can also
be used.

Example 10.1. Compute limx→0
sinx

x
. First consider sinx for x near 0. By (8.3), we can write

sinx = x−

x3

3!
+ o(x3),

where o(x3) denotes terms which are of order x4 and higher (because higher powers like x4 and

further go to 0 faster than x3, i.e. limx→0
o(x3)
x3 = 0). Then we can write

lim
x→0

sinx

x
= lim

x→0

x−
x
3

3 + o(x3)

x
= lim

x→0

x(1− x
2

3 + o(x3)
x

)

x
= lim

x→0
1−

x2

3
+

o(x3)

x
= 1,

since

lim
x→0

o(x3)

x
= lim

x→0

o(x3)

x3
x2 = lim

x→0

o(x3)

x3
lim
x→0

x2 = 0 · 0 = 0.

Remark. Note that the o(xn) does not denote a concrete function, but any (converging) power series
∑

akx
k around 0 such that the coefficients a0, . . . an are all equal to zero (as this guarantees that

limx→0

∑
akx

k

xn = 0). For example, o(x5) is simultaneously o(x3) as limx→0
o(x5)
x5 = 0 implies

lim
x→0

o(x5)

x3
= lim

x→0

o(x5)

x5
x2 = lim

x→0

o(x5)

x5
lim
x→0

x2 = 0 · 0 = 0.

(but the converse may not be true of course!), o(xn)
x

= o(xn−1) (as we can see in the example above
for n = 3), o(xn) · xm = o(xn+m) for general m,n, and o(xn) + o(xn) = o(xn).

Here is an example where we cannot use l’Hôpital’s rule, and where Taylor series works (see Q22
from the problem sheet)

Example 10.2. Let

f(x) = exp

(

sinx

1− 3x

)

and calculate

lim
x→0

f(x)− (x+ 1)

x cosx− ln(1 + x)
. (limit)

Trying l’Hôpital leads to a horrible mess which is not easier than the original function. Use Taylor
series instead.
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First consider f(x) for x near 0 (|x| < 1). By (8.3) and the geometric series 1
1−x

= 1+x+x2+· · ·
for |x| < 1, we can write

sinx = x−
x3

3!
+ o(x3), and

1

1− 3x
= 1 + 3x+ 9x2 + 27x3 + o(x3),

Thus

sinx

1− 3x
=

(

x−
x3

3!
+ o(x3)

)

(1 + 3x+ 9x2 + 27x3 + o(x3))

= x−
x3

3!
+ o(x3) + 3x2 + 9x3 + o(x3)

= x+ 3x2 +
53

6
x3 + o(x3).

We also know that ex = 1 + x+ x
2

2 + · · · and plugging in the above, we get

f(x) = 1 + x+ 3x2 +
53

6
x3 + o(x3) +

(

x+ 3x2 +
53

6
x3 + o(x3)

)2

/2

+

(

x+ 3x2 +
53

6
x3 + o(x3)

)3

/6 + o(x3)

= 1 + x+ 3x2 +
53

6
x3 + o(x3) + x2/2 + (2x · 3x2)/2 + x3/6 + o(x3)

= 1 + x+
7

2
x2 + 12x3 + o(x3).

To calculate the final limit, we also need to Taylor expand cosx ln(1 + x) up to order 3:

cosx = 1−
x2

2
+ o(x3), and ln(1 + x) = x−

x2

2
+

x3

3
+ o(x3),

so x cosx− ln(1 + x) = x
2

2 − 5
6x

3 + o(x3). Thus,

(limit) = lim
x→0

7
2x

2 + 12x3 + o(x3)
x2

2 − 5
6x

3 + o(x3)
=

7
2 + 12x+ o(x)
1
2 − 5

6x+ o(x)
=

7/2

1/2
= 7.

Another example of computing limits.

Example 10.3.

lim
x→0

x
2

1−x
+ 2 cosx− 2

2x3 + 3x7
= lim

x→0

x2(
∑

xk) + 2 cosx− 2

2x3 + 3x7
=

lim
x→0

x2 + x3 + o(x3) + 2(1− x
2

2 + o(x3))− 2

2x3 + 3x7
= lim

x→0

x2 + x3 + o(x3)− x2 + o(x3)

2x3 + o(x3)
=

lim
x→0

x3 + o(x3)

2x3 + o(x3)
= lim

x→0

1 + o(x3)
x3

2 + o(x3)
x3

=
limx→0 1 +

o(x3)
x3

limx→0 2 +
o(x3)
x3

=
1 + limx→0

o(x3)
x3

2 + limx→0
o(x3)
x3

=
1 + 0

2 + 0
= 1/2.
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