Lecture 10

Taylor series and limits

Taylor series can be used to calculate limits of the form
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where both f(z) and g(z) go to 0 as z — a. Sometimes, but not always, I'Hopital’s rule can also
be used.

Example 10.1. Compute lim,_, % First consider sinx for x near 0. By (8.3), we can write

23
sinz =x — 31 + o(z?),

where o(x3) denotes terms which are of order z* and higher (because higher powers like z* and
o(z3)

further go to 0 faster than 3, i.e. lim,_y = 0). Then we can write
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Remark. Note that the o(z™) does not denote a concrete function, but any (converging) power series
Zaka:"’ around 0 such that the coefficients ay, .. .a, are all equal to zero (as this guarantees that
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lim, Z;jgw = 0). For example, o(z%) is simultaneously o(x?) as lim,_,o O(;,) = 0 implies
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(but the converse may not be true of course!), O(in) = o(z" 1) (as we can see in the example above
for n = 3), o(z™) - ™ = o(z™*™) for general m,n, and o(z") + o(z") = o(z").

Here is an example where we cannot use ’'Hopital’s rule, and where Taylor series works (see Q22
from the problem sheet)

Example 10.2. Let

and calculate .
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Trying I’Hopital leads to a horrible mess which is not easier than the original function. Use Taylor
series instead.
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First consider f(z) for z near 0 (Jz| < 1). By (8.3) and the geometric series 2 = 1+z+a2+- -
for |z| < 1, we can write

3
smq:—:c—%—ko( %), and 1_333:1+3x+9x2+27x3+0(:c3),
Thus
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ffl;’x = (x - % + o(x )) (1 + 3z 4 922 + 272° + o(z%))
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:w—y—l—o( %) + 327 + 92° + o(2%)
. 53
=z +3z2% + Fxg + o(x?).

We also know that ele—i—x—f—%—l—-'- and plugging in the above, we get
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=1l4+z+ g$2 + 1223 + o(x3).

To calculate the final limit, we also need to Taylor expand cosz In(1 + x) up to order 3:
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23 + o(z?). Thus,
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Another example of computing limits.
Example 10.3.
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