
Lecture 11

Matrices

Although the mathematical functions describing natural phenomena can be very complicated, one
can say that locally, everything behaves linearly. Think of the tangent of a curve at a point: it is a
line which approximates the function locally around a point. This is one reason why linear algebra

is so useful.
Some of the main players in linear algebra are matrices. Matrices help to streamline the solution

to system of linear equations:

Example 11.1. Solve the system

{

x+ 2y = 1 (1)
−2x− 3y = 2 (2).

To solve this we transform the equations: First, equation (2) is transformed into “equation (1) added
twice to equation (2)”, that is

(2) −→ 2 · (1) + (2).

This gives the new system
{

x+ 2y = 1 (1)
y = 4 (2).

The point here was to cancel all xs in (2). Now cancel y in (1) via

(1) −→ (1)− 2 · (2)

to obtain
{

x = −7 (1)
y = 4 (2).

We have now obtained the solution.

As the above example demonstrates, what matters is not the variables x and y themselves, but
only the coefficients of the equations, that is the tables of numbers

(

1 2
−2 −3

)

,

(

1
2

)

which encode the system of equations. These tables of numbers are called matrices. In general, a
matrix is a rectangular array of numbers, called its entries. A matrix is said to be an m×n matrix
if it has m rows and n columns. For example,





3 1

2

−1 0
57 π





is a 3× 2 matrix.
Here are some important special cases of matrices:
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• n = 1: A m× 1 matrix





...

...



 is a column vector (or just vector).

• m = 1: A 1×m matrix
(

· · · · · ·

)

is a row vector.

• n = m: An n× n matrix is a square matrix.

We can write a matrix

A =





a11 a12
a21 a22
a31 a32





where the aij are the entries, for i = 1, 2, 3 and j = 1, 2. This is a 3× 2 matrix, but we can extend
this notation to any m× n matrix:











a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn











.

We can write this compactly as (aij), remembering that i = 1, . . . ,m and j = 1, . . . , n.
The entries aij can be real of complex numbers. Assume first that aij ∈ R. We then let

Matm×n(R)

be the set of all m× n matrices with real entries, and

Matn(R)

be the set of n× n square matrices.

Matrix multiplication

There is a way to multiply two matrices, which is a bit unusual at first, but turns out to be very
useful.

Example 11.2. Let A and B be the matrices

A =

(

1 2
3 4

)

, B =

(

5
6

)

.

Then the product is

AB =

(

1 2
3 4

)(

5
6

)

=

(

1 · 5 + 2 · 6
3 · 5 + 4 · 6

)

=

(

17
39

)

.

Note that the product of the square matrix A with the vector matrix B is another vector matrix.
In general, a product of m× n matrix A and an n× l matrix B is m× l matrix C, and

cij =
n
∑

k=1

aikbkj
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The reason why it is useful to define matrix multiplication like this is that we can write the
system of equations in (11.1) as

(

1 2
−2 −3

)(

x

y

)

=

(

x+ 2y
−2x− 3y

)

=

(

1
2

)

.

We have therefore replaced a system with two equations by a single matrix equation. This is helpful
if we had a system of 1000 equations, especially if we want to solve it using a computer (which,
surely, we want).

We can also multiply two square matrices:

Example 11.3. Let

A =

(

1 2
3 4

)

, B =

(

0 2
0 0

)

.

Then

AB =

(

1 · 0 + 2 · 0 1 · 2 + 2 · 0
3 · 0 + 4 · 0 3 · 2 + 4 · 0

)

=

(

0 2
0 6

)

and

BA =

(

0 2
0 0

)(

1 2
3 4

)

=

(

0 · 1 + 2 · 3 0 · 2 + 2 · 4
0 · 1 + 0 · 3 0 · 2 + 0 · 4

)

=

(

6 8
0 0

)

.

So we see that AB is not equal to BA! Moreover,

BB = B2 =

(

0 2
0 0

)(

0 2
0 0

)

=

(

0 0
0 0

)

,

which is called the zero matrix 02×2 (or simply 0). We see that it can happen that the square of a
non-zero matrix is zero!

We can multiply a 2× 2 matrix with a 2× 1 one, but not with a 3× 1 or bigger vector matrix.
In general, we can multiply an m× n matrix by an n× k one. For example, a 2× 3 one by a 3× 2
one:

(

1 −4 3
0 0 1

)





3 2
−1 0
0 5



 =

(

1 · 3 + (−4)(−1) + 3 · 0 1 · 2 + (−4) · 0 + 3 · 5
0 · 3 + 0 · (−1) + 1 · 0 0 · 2 + 0 · 0 + 1 · 5

)

=

(

7 17
0 5

)

.

Similarly, we have
(

1 2
)

(

3
4

)

= (1 · 3 + 2 · 4) = (11),

and
(

3
4

)

(

1 2
)

=

(

3 · 1 3 · 2
4 · 1 4 · 2

)

=

(

3 6
4 8

)

.
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Summary

• If A ∈ Matm×n(R) and B ∈ Matn×k(R), we can multiply A and B and AB ∈ Matm×k(R).

• We can only multiply two matrices A and B if A has the same number of columns as B has
rows.

• We can have AB 6= BA. If AB = AB (which happens sometimes) the matrices A and B are
said to commute.

• We can have AB = 0, even though A 6= 0 and B 6= 0.

Other operations on matrices

• Addition of matrices is easy. Just add element-wise: (A+B)ij = aij + bij . For example,

(

1 2
3 4

)

+

(

0 2
0 0

)

=

(

1 + 0 2 + 2
3 + 0 4 + 0

)

=

(

1 4
3 4

)

.

Since a+ b = b+ a for any real numbers a, b, it is clear that A+B = B+A, for two matrices
A,B.
Note that we can only add two matrices if they are of the same size.

• If λ ∈ R is a scalar and A = (aij) ∈ Matm×n(R), then λA = (λaij). For example, if λ = 2

and A =

(

1 2
3 4

)

, we have

2 ·

(

1 2
3 4

)

=

(

2 4
6 8

)

.

• If A is a matrix, we can turn its rows into columns (and columns into rows; same thing). The
result is called the transpose: AT of A, for example:

A =

(

1 2 3
4 5 6

)

, AT =





1 4
2 5
3 6



 .

• If A is an m× n matrix, then −A is the matrix 0m×n − A, where 0m×n is the zero matrix of
that size. In other words, to get −A just change sign on each of the entries of A.
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