Lecture 19

Unitary and normal matrices A complex matrix A is called **unitary** if $A^{\dagger}A = I$, i.e. $A^{\dagger} = A^{-1}$. Note that real orthogonal matrices are also unitary. The set of all unitary $(n \times n)$ matrices is denoted by U(n).

Example 19.1. A matrix
$$A = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$$
 is unitary: $A^{\dagger} = A^* = \begin{pmatrix} -i & 0 \\ 0 & 1 \end{pmatrix}$, so $A^{\dagger}A = I$.

Similarly to orthogonal matrices, an inverse of a unitary matrix is also unitary, and a product of unitary matrices is a unitary matrix. Also,

$$1 = \det I = \det(A^{-1}A) = \det(A^{\dagger}A) = \det A^{\dagger} \det A = (\det A)^{*} \det A = |\det A|^{2},$$

so $|\det A| = 1$.

Unitary matrices preserve the length $l(\underline{v})$ of a complex vector $\underline{v} = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix}$ defined by $l(\underline{v}) = \frac{1}{|z|^2}$

 $\sqrt{|z_1|^2 + \dots + |z_n|^2}.$

A matrix A is called **normal** if $A^{\dagger}A = AA^{\dagger}$, i.e. if it commutes with its Hermitian conjugate. For example, Hermitian and unitary matrices are normal. An inverse of a normal matrix (if exists) is also normal.

Vector spaces

Let

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mid x_i \in \mathbb{R} \right\}$$

be the set of $n \times 1$ column vectors of real numbers. Similarly, if we replace \mathbb{R} by \mathbb{C} we get \mathbb{C}^n . We can add two vectors

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

and we can multiply a vector by a scalar $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$ if we work over \mathbb{C}):

$$\lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix}.$$

(but note that we cannot multiply two vectors because the matrix product is not defined for two $n \times 1$ matrices, unless n = 1!)

Definition 19.2. A vector space is a set with two operations: addition and scalar multiplication. Its elements are called *vectors*. In particular, \mathbb{R}^n and \mathbb{C}^n are vector spaces.

Definition 19.3. Let $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_m$ be vectors and $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$ (or \mathbb{C}). The vector

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \dots + \lambda_m \underline{v}_m$$

is called a *linear combination* of $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_m$.

Example 19.4. Let
$$\underline{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\underline{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ in \mathbb{R}^3 . Then any vector $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ is a linear combination of \underline{v}_1 and \underline{v}_2 because

$$\begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x\underline{v}_1 + y\underline{v}_2.$$

Note that the vector $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ is *not* a linear combination of \underline{v}_1 and \underline{v}_2 .

A set of vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_m$ is called *linearly dependent* if one of the vectors is a linear combination of the others, that is, if

$$\underline{v}_i = \lambda_1 \underline{v}_1 + \dots + \lambda_{i-1} \underline{v}_{i-1} + \lambda_{i+1} \underline{v}_{i+1} + \dots + \lambda_m \underline{v}_m$$

for some $1 \leq i \leq m$. This is equivalent to saying that there exist scalars $\lambda_1, \ldots, \lambda_m$ (not all of them zero!) such that

$$\lambda_1 \underline{v}_1 + \dots + \lambda_m \underline{v}_m = \underline{0}.$$

If $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_m$ are not linearly dependent, they are said to be *linearly independent*. Mathematically, this means that the relation

$$\lambda_1 \underline{v}_1 + \dots + \lambda_m \underline{v}_m = \underline{0}$$

can only hold if $\lambda_1 = \lambda_2 = \cdots = \lambda_m = 0$.

Example 19.5.

• $\underline{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\underline{v}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ in \mathbb{R}^2 are linearly dependent, because

$$2\underline{v}_1 - \underline{v}_2 = \underline{0}$$

• $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are linearly independent, because if

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 = \begin{pmatrix} \lambda_1 \\ 0 \end{pmatrix} + \begin{pmatrix} \lambda_2 \\ -\lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 + \lambda_2 \\ -\lambda_2 \end{pmatrix} = \underline{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

then we must have

$$\lambda_1 + \lambda_2 = 0$$
, and $-\lambda_2 = 0$

that is, $\lambda_1 = \lambda_2 = 0$.

• $\underline{v}_1 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \underline{v}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \underline{v}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$ in \mathbb{R}^3 are linearly dependent because we have the relation

$$\underline{v}_1 + \underline{v}_2 = \underline{v}_3.$$

Definition 19.6. The span of the vectors $\underline{v}_1, \ldots, \underline{v}_m$, written

$$\operatorname{span}\{\underline{v}_1,\ldots,\underline{v}_m\},\$$

is the set of all vectors which are linear combinations of $\underline{v}_1, \ldots, \underline{v}_m$.

Example 19.7.

•
$$\operatorname{span}\left\{\begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}1\\-1\end{pmatrix}\right\} = \mathbb{R}^2$$
, since for $\operatorname{any}\begin{pmatrix}a\\b\end{pmatrix} \in \mathbb{R}^2$ there are λ_1, λ_2 such that $\begin{pmatrix}a\\b\end{pmatrix} = \lambda_1\begin{pmatrix}1\\0\end{pmatrix} + \lambda_2\begin{pmatrix}1\\-1\end{pmatrix}$, namely, $\lambda_2 = -b$, $\lambda_1 = a + b$.
• $\operatorname{span}\left\{\begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\1\end{pmatrix}, \begin{pmatrix}1\\1\\1\end{pmatrix}\right\} = \left\{\lambda_1\begin{pmatrix}0\\1\\0\end{pmatrix} + \lambda_2\begin{pmatrix}1\\0\\1\end{pmatrix} + \lambda_3\begin{pmatrix}1\\1\\1\end{pmatrix}\right\} = \left\{(\lambda_1 + \lambda_3)\begin{pmatrix}0\\1\\0\end{pmatrix} + (\lambda_2 + \lambda_3)\begin{pmatrix}1\\0\\1\end{pmatrix}\right\} = \operatorname{span}\left\{\begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\1\end{pmatrix}\right\}.$