
Lecture 19

Unitary and normal matrices A complex matrix A is called unitary if A†A = I, i.e. A† = A−1.
Note that real orthogonal matrices are also unitary. The set of all unitary (n×n) matrices is denoted
by U(n).

Example 19.1. A matrix A =

(
i 0
0 1

)
is unitary: A† = A∗ =

(
−i 0
0 1

)
, so A†A = I.

Similarly to orthogonal matrices, an inverse of a unitary matrix is also unitary, and a product
of unitary matrices is a unitary matrix. Also,

1 = det I = det(A−1A) = det(A†A) = detA† detA = (detA)∗ detA = |detA|2,

so |detA| = 1.

Unitary matrices preserve the length l(v) of a complex vector v =

z1. . .
zn

 defined by l(v) =√
|z1|2 + · · ·+ |zn|2.
A matrix A is called normal if A†A = AA†, i.e. if it commutes with its Hermitian conjugate.

For example, Hermitian and unitary matrices are normal. An inverse of a normal matrix (if exists)
is also normal.

Vector spaces

Let

Rn = {

x1...
xn

 | xi ∈ R}

be the set of n× 1 column vectors of real numbers. Similarly, if we replace R by C we get Cn. We
can add two vectors a1...

an

+

b1...
bn

 =

a1 + b1
...

an + bn


and we can multiply a vector by a scalar λ ∈ R (or λ ∈ C if we work over C):

λ

a1...
an

 =

λa1...
λan

 .

(but note that we cannot multiply two vectors because the matrix product is not defined for two
n× 1 matrices, unless n = 1!)

Definition 19.2. A vector space is a set with two operations: addition and scalar multiplication.
Its elements are called vectors. In particular, Rn and Cn are vector spaces.
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Definition 19.3. Let v1, v2, . . . , vm be vectors and λ1, λ2, . . . , λm ∈ R (or C). The vector

λ1v1 + λ2v2 + · · ·+ λmvm

is called a linear combination of v1, v2, . . . , vm.

Example 19.4. Let v1 =

1
0
0

, v2 =

0
1
0

 in R3. Then any vector

xy
0

 is a linear combination

of v1 and v2 because xy
0

 = x

1
0
0

+ y

0
1
0

 = xv1 + yv2.

Note that the vector

0
0
1

 is not a linear combination of v1 and v2.

A set of vectors v1, v2, . . . , vm is called linearly dependent if one of the vectors is a linear com-
bination of the others, that is, if

vi = λ1v1 + · · ·+ λi−1vi−1 + λi+1vi+1 + · · ·+ λmvm,

for some 1 ≤ i ≤ m. This is equivalent to saying that there exist scalars λ1, . . . , λm (not all of them
zero!) such that

λ1v1 + · · ·+ λmvm = 0.

If v1, v2, . . . , vm are not linearly dependent, they are said to be linearly independent. Mathematically,
this means that the relation

λ1v1 + · · ·+ λmvm = 0

can only hold if λ1 = λ2 = · · · = λm = 0.

Example 19.5.

• v1 =

(
1
1

)
and v2 =

(
2
2

)
in R2 are linearly dependent, because

2v1 − v2 = 0.

•
(

1
0

)
and

(
1
−1

)
are linearly independent, because if

λ1v1 + λ2v2 =

(
λ1
0

)
+

(
λ2
−λ2

)
=

(
λ1 + λ2
−λ2

)
= 0 =

(
0
0

)
,

then we must have
λ1 + λ2 = 0, and − λ2 = 0,

that is, λ1 = λ2 = 0.
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• v1 =

0
1
0

, v2 =

1
0
1

, v3 =

1
1
1

 in R3 are linearly dependent because we have the relation

v1 + v2 = v3.

Definition 19.6. The span of the vectors v1, . . . , vm, written

span{v1, . . . , vm},

is the set of all vectors which are linear combinations of v1, . . . , vm.

Example 19.7.

• span
{(

1
0

)
,

(
1
−1

)}
= R2, since for any

(
a
b

)
∈ R2 there are λ1, λ2 such that

(
a
b

)
= λ1

(
1
0

)
+

λ2

(
1
−1

)
, namely,λ2 = −b, λ1 = a+ b.

•

span


0

1
0

 ,

1
0
1

 ,

1
1
1

 =

λ1
0

1
0

+ λ2

1
0
1

+ λ3

1
1
1


=

(λ1 + λ3)

0
1
0

+ (λ2 + λ3)

1
0
1

 = span


0

1
0

 ,

1
0
1

 .
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