
Lecture 20

Bases

Let V be a vector space (e.g., Rn or Cn). The span of some vectors in V is also a vector space,
which can be all of V or smaller.

Definition 20.1. A basis of V is a set of vectors v1, . . . , vm such that:

i) this set is linearly independent,

ii) span{v1, . . . , vm} = V .

Example 20.2. The vectors (
1
0

)
,

(
0
1

)
form a basis for R2 (or C2), called the standard basis:

• They span all of R2 (or C2): any vector
(
x
y

)
can be written as

x

(
1
0

)
+ y

(
0
1

)
.

• They are linearly independent: If λ1
(

1
0

)
+ λ2

(
0
1

)
= 0, then λ1 = λ2 = 0.

There are other bases for R2, for example (
1
0

)
,

(
1
−1

)
from Example (19.7).

On the other hand, the three vectors(
1
0

)
,

(
0
1

)
,

(
1
−1

)
also span R2, but they are not linearly independent:(

1
−1

)
=

(
1
0

)
−
(

0
1

)
,

so these three vector do not form a basis.

Theorem 20.3. Every vector space has a basis. For a given vector space V , the number of elements
in a basis (if finite) is always the same. This number is called the dimension of V (notation: dimV ).

For example, R2 (or C2) has dimension two. In R3 (or C3) we have the standard basis1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

so these spaces have dimension 3. More generally, the spaces Rn and Cn are n-dimensional.
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Matrices as linear maps

Let A ∈ Matn(R) be a square matrix of size n. We can define a function from the vector space Rn
to itself:

LA : Rn −→ Rn, LA(x) = Ax.

This map is compatible with addition and scalar multiplication, that is,

LA(x+ y) = A(x+ y) = Ax+Ay = LA(x) + LA(y)

and
LA(λx) = A(λx) = λAx = λLA(x), λ ∈ R.

A function satisfying these two properties is called a linear map.
So, from a matrix, we get a linear map. We can also go the other way:

Given a linear map f : Rn −→ Rm, we can write down a matrix A ∈ Matm×n(R), such
that LA = f .

The way to do this is the following. Let {v1, . . . , vn} be the standard basis of Rn, and {u1, . . . , um}
is the standard basis in Rm. Then every f(vj) is a linear combination of vectors of {u1, . . . , um},
so we can write for every j = 1, . . . , n

f(vj) = a1ju1 + a2ju2 + · · ·+ amjum =
m∑
i=1

aijui.

Then f = LA, where A = (aij).
Here is an example to show how this is done.

Example 20.4. Let f : R3 −→ R3 be the function

f

xy
z

 =

 z
−y
x

 .

We first show that f is a linear map:

• Additivity:

f

xy
z

+

ab
c

 = f

x+ a
y + b
z + c

 =

 z + c
−(y + b)
x+ a

 =

 z
−y
x

+

 c
−b
a

 = f

xy
z

+ f

ab
c

.

• Scalar multiplication: f

λ
xy
z

 =

 λz
−λy
λx

 = λf

xy
z

.

We will now find a matrix A such that LA = f . To do this, we choose the standard basis of Rn.:1
0
0

 ,

0
1
0

 ,

0
0
1

 .
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To find the matrix with respect to this basis, we evaluate f on each basis vector:

f

1
0
0

 =

0
0
1


f

0
1
0

 =

 0
−1
0


f

0
0
1

 =

1
0
0

 .

We then put the three resulting vectors together as the columns of a matrix:

A =

0 0 1
0 −1 0
1 0 0

 .

Then our original map f equals LA:

LA

xy
z

 =

0 0 1
0 −1 0
1 0 0

xy
z

 =

 z
−y
x

 = f

xy
z

 .
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