Lecture 21

Kernel, image and rank

Let $A \in \operatorname{Mat}_{m \times n}$, and $L_A : V \to W$ be a linear map. Here dim V = n, dim W = m.

Definition 21.1. • A *kernel* of L_A is the set ker $L_A = \{ \underline{v} \in V \mid L_A(\underline{v}) = \underline{0} \}.$

- An *image* of L_A is the set im $A = \{ \underline{w} \in W \mid \underline{w} = L_A(\underline{v}) \text{ for some } \underline{v} \in V \}.$
- Recall that a kernel of a matrix A is the set of solutions of the homogeneous system $A\underline{x} = \underline{0}$. Thus, the kernel of A is precisely the kernel of L_A .

Example 21.2. • $L_A = 0 : V \to W, \underline{v} \mapsto \underline{0} \in W$. Then ker $L_A = V$, im $L_A = \underline{0} \in W$.

• $L_A = \text{id} : V \to V, \underline{v} \mapsto \underline{v} \text{ (identity map)}$. Then $\ker L_A = \underline{0}, \operatorname{im} L_A = V$.

•
$$L_A : \mathbb{R}^2 \to \mathbb{R}, L_A \begin{pmatrix} x \\ y \end{pmatrix} = x$$
. Then ker $L_A = \{ \begin{pmatrix} 0 \\ y \end{pmatrix} \mid y \in \mathbb{R} \}, \text{ im } L_A = \mathbb{R}.$

Note that both the image and the kernel of a linear map are vector spaces themselves.

Definition 21.3. A rank of a linear map L_A is the dimension of its image. Equivalently, it is the maximal number of linearly independent columns in the corresponding matrix A. The latter is called a rank of A, notation: $\operatorname{rk} A$.

Example 21.4.
$$\operatorname{rk} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
; $\operatorname{rk} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 1$; $\operatorname{rk} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 2$; $\operatorname{rk} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 2$.

Fact. Let $A \in Mat_{m \times n}$. Then

- rk A is also equal to the maximal number of linearly independent rows of A;
- therefore, rk A does not change under ERO;
- thus, the rank of A is actually equal to the number of non-zero rows in the RREF of A.

Example 21.5. Let $A = \begin{pmatrix} 0 & 1 & 1 & 3 \\ 1 & 2 & 1 & 6 \end{pmatrix}$. The columns of A are the vectors $\underline{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\underline{v}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\underline{v}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\underline{v}_4 = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$. Vectors \underline{v}_1 and \underline{v}_2 are linearly independent, but the other vectors are linear combinations of \underline{v}_1 and \underline{v}_2 : $\underline{v}_3 = \underline{v}_2 - \underline{v}_1$, $\underline{v}_4 = 2\underline{v}_2$. Therefore, the maximal number of linear independent columns is 2, so rk A = 2.

On the other hand, we can compute RREF of A:

$$\begin{pmatrix} 0 & 1 & 1 & 3 \\ 1 & 2 & 1 & 6 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 1 & 6 \\ 0 & 1 & 1 & 3 \end{pmatrix} \xrightarrow{R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 3 \end{pmatrix}$$

Thus, the RREF of A has two non-zero rows, so we see again that rk A = 2.

Let now $A \in Mat_n$. We say that A is singular if $\operatorname{rk} A < n$, and non-singular otherwise. As we can see from the fact above, the rank of a square matrix A is equal to n if and only if the RREF of A is the identity matrix I_n , which, as we know (see Proposition 17.3), is the same as det $A \neq 0$. Therefore, in view of Corollary 17.4, we can summarize this as follows:

Corollary 21.6. For $A \in Mat_n$ the following are equivalent:

- $\operatorname{rk} A = n$ (i.e., A is non-singular);
- ker $A = \underline{0}$ (*i.e.* the homogeneous system $A\underline{x} = \underline{0}$ has a unique solution);
- det $A \neq 0$;
- RREF of A is the identity matrix I_n ;
- A is invertible.

There is another way to find the rank of a matrix $A \in Mat_{m \times n}$ based on the following property.

Fact. The rank of a matrix is equal to the maximal size of a non-singular square submatrix.

Example 21.7. Let $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Since there are two rows only, we see that $\operatorname{rk} A \leq 2$. We observe that $\det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1 \neq 0$, so there is a 2 × 2 non-singular submatrix, which implies that $\operatorname{rk} A \geq 2$. Therefore, $\operatorname{rk} A = 2$.

Example 21.8. Let $A = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 2 & -4 \\ 0 & -3 & 6 \end{pmatrix}$. Observe that det A = 0, so $\operatorname{rk} A < 3$. Further, any 2×2 submatrix of A is singular, so $\operatorname{rk} A < 2$. There are non-zero entries in A, which implies that $\operatorname{rk} A \ge 1$. Thus, $\operatorname{rk} A = 1$.