Lecture 23

Eigenvalues and eigenvectors

Definition 23.1. Let A € Mat,,(C). Recall that if
Axr = Az,

for some non-zero vector z € C™ and \ € C, then A is called an eigenvalue of A and z is called an
eigenvector of A (for the eigenvalue \).

To find eigenvalues and eigenvectors, we proceed as follows:
Rewrite the equation Ax = Ax as

Az — Az = (A— M)z =0.

We thus have a homogeneous system of linear equations, with coeflicient matrix A — AI. A linear
system has either zero solutions, one solution or infinitely many solutions. A homogeneous system
always has at least one solution: x = 0, so the first possibility is excluded.

Now, if the determinant det(A — AI) is not zero, then we know that A — AI has an inverse, so
we would get ezactly one solution

(A=X)"HA-Xz=0=2=0.

But an eigenvector is not allowed to be 0, so we will ignore this case. Thus, the only possibility is
that
det(A — \I) =0,

and for any A satisfying this, we will have infinitely many solutions z.
The LHS here will be a polynomial in A of degree n; compare how in (22.3) we got

det(A — M) = X2 — 5\ + 4.

The polynomial det(A — AI) is called the characteristic polynomial of A. Its roots are those values
of A for which the equation Ax = Ax has a non-zero solution, so these roots are the eigenvalues of
A.
Suppose now that a is an eigenvalue of A. To find the corresponding eigenvector(s), we solve
the linear system
Az = ax,

just like we did in (22.3). Note: We will have infinitely many eigenvectors.
We have seen examples at the last lecture, here are some other examples:

0 1
-1 0

eigenvalues are +i. The eigenvectors v; and v, can be found by solving the equations (A—il)v; =0

. . 1 1
and (A —il)v, = 0, so we can choose eigenvectors v, = (z) and vy = ( )

Example 23.2. Let A = < ) The characteristic polynomial is det(A — AI) = 1 + A2, so the
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Example 23.3. Let A = 8 (1) . The characteristic polynomial is det(A — AI) = (—=\)? = A2, so
there is only one eigenvalue A = 0. The space of eigenvectors Ejy is given by
Ey={z e C?| Az = 0},

that is,
By = {(3‘) |z €C}.

. . 1
Since Ej is spanned by one vector, for example < 0),
space. This means that any two vectors is Ey are linearly dependent. Thus, there are no two vectors
in Fy which form a basis for C2.

it means that Ey is a one-dimensional vector

Definition 23.4. The set of eigenvectors for an eigenvalue A is called an eigenspace, denoted Ey.
Thus,
Ex={v| (A= AM)v=0}.

1 06
Example 23.5. Let A= |3 2 1]. Determine the eigenvalues and eigenspaces of A.
2 0 2

Solution: For the eigenvalues:

1-X2 0 6

3 2—-A 1 | = (expand along the middle column)

2 0 2-=2A
1-X 6

2 2-A
= 2=\ =32-10)= (2= N\ =5)(A+2).

det(A — \I)

—(2- ) = =A== - 12

The last step is given by finding the roots of the quadratic polynomial. Thus the eigenvalues are
2, 5, -2

The eigenvectors in the eigenspace Fy are given by

Az =2z <— (A—-2Nz =0 <=

oo o
o~ o
[
Il
o

Gauss elimination gives the equivalent system
1 00 0
0 0 1l]z=0«<=2x=1|y]|, foranyy e C.
000 0

Thus



Similarly, for the eigenvalue 5, we get

-4 0 6 1 0 -3/2
3 -3 1 ]z=0«<~ (01 —-11/6)2z=0
2 0 -3 00 0
3z/2
<~ zx=|112/6 |, z € C.
z
3z/2
< F5 = 11z/6 | |z € C
z
Finally, for —2, we get
3 06 10 2
34 1)lz=0«<= |01 -5/4]z=0
2 0 4 00 O
—2z
< zxz=|5z/4], z€C
z
—2z
— FE 5= 5z/4| |z€C
z

We see that each of the eigenspaces are one-dimensional. Indeed, we can choose a one-element basis
in each:

0 9 8
FEs = span 1 , F5 = span 11 , E_5 = span -5
0 6 —4
10 0 O
01 0 O : . .
Example 23.6. Let A = 00 o 2| Determine the eigenvalues and eigenspaces of A.
00 -2 0
Solution: For the eigenvalues:
1—A 0 0 0
det(A— A1) =| o 1? O o =) = (1A N2 ).
0 0 -2 =A

Thus the eigenvalues are
Al =20, Ag=—2i, A3 =1.
The eigenvectors in the eigenspace FEy; are given by
1—2¢ 0 0 0
0 1-2i 0 0
0 0 —2i 2
0 0 -2 =2

0=(A-2il)z =
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which is equivalent to

0
vy =0 (1) , c1 € C.
i
Thus
0
0
FEy = | c1 € C
C1
icq
Similarly, for the eigenvalue Ao = —2¢, we get

0=(A-2Dz=| 0 2 2|%
0 0 -2 2
which is equivalent to
0
Vg = C2 (1) , Co € C.
—1i
Thus
0
0
E_o = ’ co eC
C2
—’iCQ
Finally, for A3 = 1, we get
00 0 O
00 0 O
O=M=-Dz=1, ¢ 4 o |v
00 -2 -1
which is equivalent to
c3
Cy4
veFk = 0 |03,C4EC
0
1 0
We see that F/y can be written as a span of the two linearly independent vectors 8 and é ,
0 0

so it is two-dimensional. Note also that we could choose a different basis in F7, and thus obtain
a different basis of C* consisting of eigenvectors of A. We will come back to this in the process of
diagonalization of matrices.
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