
Lecture 23

Eigenvalues and eigenvectors

Definition 23.1. Let A ∈ Matn(C). Recall that if

Ax = λx,

for some non-zero vector x ∈ C
n and λ ∈ C, then λ is called an eigenvalue of A and x is called an

eigenvector of A (for the eigenvalue λ).

To find eigenvalues and eigenvectors, we proceed as follows:
Rewrite the equation Ax = λx as

Ax− λx = (A− λI)x = 0.

We thus have a homogeneous system of linear equations, with coefficient matrix A − λI. A linear
system has either zero solutions, one solution or infinitely many solutions. A homogeneous system
always has at least one solution: x = 0, so the first possibility is excluded.

Now, if the determinant det(A − λI) is not zero, then we know that A − λI has an inverse, so
we would get exactly one solution

(A− λI)−1(A− λI)x = 0 =⇒ x = 0.

But an eigenvector is not allowed to be 0, so we will ignore this case. Thus, the only possibility is
that

det(A− λI) = 0,

and for any λ satisfying this, we will have infinitely many solutions x.
The LHS here will be a polynomial in λ of degree n; compare how in (22.3) we got

det(A− λI2) = λ2
− 5λ+ 4.

The polynomial det(A− λI) is called the characteristic polynomial of A. Its roots are those values
of λ for which the equation Ax = λx has a non-zero solution, so these roots are the eigenvalues of
A.

Suppose now that a is an eigenvalue of A. To find the corresponding eigenvector(s), we solve
the linear system

Ax = ax,

just like we did in (22.3). Note: We will have infinitely many eigenvectors.
We have seen examples at the last lecture, here are some other examples:

Example 23.2. Let A =

(

0 1
−1 0

)

. The characteristic polynomial is det(A− λI) = 1 + λ2, so the

eigenvalues are ±i. The eigenvectors v
1

and v
2

can be found by solving the equations (A−iI)v
1
= 0

and (A− iI)v
2
= 0, so we can choose eigenvectors v

1
=

(

1
i

)

and v
2
=

(

1
−i

)

.
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Example 23.3. Let A =

(

0 1
0 0

)

. The characteristic polynomial is det(A− λI) = (−λ)2 = λ2, so

there is only one eigenvalue λ = 0. The space of eigenvectors E0 is given by

E0 = {x ∈ C
2 | Ax = 0},

that is,

E0 = {

(

x

0

)

| x ∈ C}.

Since E0 is spanned by one vector, for example

(

1
0

)

, it means that E0 is a one-dimensional vector

space. This means that any two vectors is E0 are linearly dependent. Thus, there are no two vectors
in E0 which form a basis for C

2.

Definition 23.4. The set of eigenvectors for an eigenvalue λ is called an eigenspace, denoted Eλ.
Thus,

Eλ = {v | (A− λI)v = 0} .

Example 23.5. Let A =





1 0 6
3 2 1
2 0 2



. Determine the eigenvalues and eigenspaces of A.

Solution: For the eigenvalues:

det(A− λI) =

∣

∣

∣

∣

∣

∣

1− λ 0 6
3 2− λ 1
2 0 2− λ

∣

∣

∣

∣

∣

∣

= (expand along the middle column)

= (2− λ)

∣

∣

∣

∣

1− λ 6
2 2− λ

∣

∣

∣

∣

= (2− λ)((1− λ)(2− λ)− 12)

= (2− λ)(λ2 − 3λ− 10) = (2− λ)(λ− 5)(λ+ 2).

The last step is given by finding the roots of the quadratic polynomial. Thus the eigenvalues are

2, 5, −2.

The eigenvectors in the eigenspace E2 are given by

Ax = 2x ⇐⇒ (A− 2I)x = 0 ⇐⇒





−1 0 6
3 0 1
2 0 0



x = 0.

Gauss elimination gives the equivalent system




1 0 0
0 0 1
0 0 0



x = 0 ⇐⇒ x =





0
y

0



 , for any y ∈ C.

Thus

E2 =











0
y

0



 | y ∈ C







.
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Similarly, for the eigenvalue 5, we get




−4 0 6
3 −3 1
2 0 −3



x = 0 ⇐⇒





1 0 −3/2
0 1 −11/6
0 0 0



x = 0

⇐⇒ x =





3z/2
11z/6
z



 , z ∈ C.

⇐⇒ E5 =











3z/2
11z/6
z



 | z ∈ C







.

Finally, for −2, we get




3 0 6
3 4 1
2 0 4



x = 0 ⇐⇒





1 0 2
0 1 −5/4
0 0 0



x = 0

⇐⇒ x =





−2z
5z/4
z



 , z ∈ C.

⇐⇒ E
−2 =











−2z
5z/4
z



 | z ∈ C







.

We see that each of the eigenspaces are one-dimensional. Indeed, we can choose a one-element basis

in each:

E2 = span











0
1
0











, E5 = span











9
11
6











, E
−2 = span











8
−5
−4











.

Example 23.6. Let A =









1 0 0 0
0 1 0 0
0 0 0 2
0 0 −2 0









. Determine the eigenvalues and eigenspaces of A.

Solution: For the eigenvalues:

det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

∣

1− λ 0 0 0
0 1− λ 0 0
0 0 −λ 2
0 0 −2 −λ

∣

∣

∣

∣

∣

∣

∣

∣

= (1− λ)2(4 + λ2) = (1− λ)2(2i+ λ)(2i− λ).

Thus the eigenvalues are

λ1 = 2i, λ2 = −2i, λ3 = 1.

The eigenvectors in the eigenspace E2i are given by

0 = (A− 2iI)x =









1− 2i 0 0 0
0 1− 2i 0 0
0 0 −2i 2
0 0 −2 −2i









v1,
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which is equivalent to

v1 = c1









0
0
1
i









, c1 ∈ C.

Thus

E2i =























0
0
c1
ic1









| c1 ∈ C















.

Similarly, for the eigenvalue λ2 = −2i, we get

0 = (A− 2iI)x =









1 + 2i 0 0 0
0 1 + 2i 0 0
0 0 2i 2
0 0 −2 2i









v2,

which is equivalent to

v2 = c2









0
0
1
−i









, c2 ∈ C.

Thus

E
−2i =























0
0
c2

−ic2









| c2 ∈ C















.

Finally, for λ3 = 1, we get

0 = (A− I)x =









0 0 0 0
0 0 0 0
0 0 −1 2
0 0 −2 −1









v,

which is equivalent to

v ∈ E1 =























c3
c4
0
0









| c3, c4 ∈ C















.

We see that E1 can be written as a span of the two linearly independent vectors









1
0
0
0









and









0
1
0
0









,

so it is two-dimensional. Note also that we could choose a different basis in E1, and thus obtain

a different basis of C4 consisting of eigenvectors of A. We will come back to this in the process of

diagonalization of matrices.
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