Lecture 24

Eigenvalues of special matrices

We now look at eigenvalues of matrices of special types.

Hermitian matrices. Let $A \in \operatorname{Mat}_n$ be Hermitian, so that $A^{\dagger} = A$. Let \underline{v} be an eigenvector of $A, A\underline{v} = \lambda \underline{v}$. Let us compute $\underline{v}^{\dagger}A\underline{v}$ in two ways. First,

$$\underline{v}^{\dagger}A\underline{v} = (\underline{v}^{\dagger}A)\underline{v} = (\underline{v}^{\dagger}A^{\dagger})\underline{v} = (A\underline{v})^{\dagger}\underline{v} = (\lambda\underline{v})^{\dagger}\underline{v} = \underline{v}^{\dagger}\lambda^{*}\underline{v} = \lambda^{*}(\underline{v}^{\dagger}\underline{v}).$$

On the other hand,

$$\underline{v}^{\dagger}A\underline{v} = \underline{v}^{\dagger}(A\underline{v}) = \underline{v}^{\dagger}\lambda\underline{v} = \lambda(\underline{v}^{\dagger}\underline{v}).$$

Comparing the two expressions and using the fact $\underline{v}^{\dagger}\underline{v} \neq 0$, we see that $\lambda^* = \lambda$. Therefore, eigenvalues of Hermitian matrices are always real.

Example 24.1. Let $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$. Then the characteristic polynomial is det $(A - \lambda I) = (1 - \lambda)(2 - \lambda) - 1 = \lambda^2 - 3\lambda + 1$ which has two real roots $\lambda = \frac{3\pm\sqrt{5}}{2}$.

As real symmetric matrices are Hermitian, we see that they also have real eigenvalues. Further, the computation above applied to an anti-Hermitian matrix would give $\lambda^* = -\lambda$, which implies that the eigenvalues are purely imaginary (i.e., their real part is zero). Summarizing, we have

Corollary 24.2. • Eigenvalues of Hermitian matrices are real.

- Eigenvalues of real symmetric matrices are real.
- Eigenvalues of anti-Hermitian matrices are purely imaginary. In particular, eigenvalues of real anti-symmetric matrices are purely imaginary.

Unitary matrices. Now let $A \in Mat_n$ be unitary, so that $A^{\dagger}A = I$. Let \underline{v} be an eigenvector of $A, A\underline{v} = \lambda \underline{v}$. Let us compute $\underline{v}^{\dagger}\underline{v}$. We have

$$\underline{v}^{\dagger}\underline{v} = \underline{v}^{\dagger}I\underline{v} = \underline{v}^{\dagger}A^{\dagger}A\underline{v} = (A\underline{v})^{\dagger}(A\underline{v}) = (\lambda\underline{v})^{\dagger}(\lambda\underline{v}) = \underline{v}^{\dagger}\lambda^{*}\lambda\underline{v} = (\lambda\lambda^{*})(\underline{v}^{\dagger}\underline{v}) = |\lambda|^{2}(\underline{v}^{\dagger}\underline{v}).$$

Therefore, $|\lambda|^2 = 1$, so $|\lambda| = 1$.

Corollary 24.3. Eigenvalues of unitary and real orthogonal matrices have modulus 1.

Example 24.4. Let $A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$. Then $\lambda = \pm e^{i\varphi}$, so $|\lambda| = 1$.

Diagonalization

A matrix $A \in Mat_n(\mathbb{C})$ is said to be *diagonalizable* if we can choose a basis for \mathbb{C}^n consisting of eigenvectors of L_A .

The term *diagonalization* means the following. Given a basis $\{\underline{v}_1, \ldots, \underline{v}_n\}$ for \mathbb{C}^n , we can create a matrix $B = (b_{ij})$ of L_A with respect to this basis: we can write for every $j = 1, \ldots, n$

$$L_A(\underline{v}_j) = b_{1j}\underline{v}_1 + b_{2j}\underline{v}_2 + \dots + b_{nj}\underline{v}_n = \sum_{i=1}^n b_{ij}\underline{v}_i.$$

If the basis consists of eigenvectors of L_A , then $L_A \underline{v}_j = \lambda_j \underline{v}_j$, so the matrix B is diagonal.

Example 24.5. We have already seen in (22.4) that $A = \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}$ has eigenvectors

$$\underline{v}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \ \underline{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$ respectively. Therefore,

$$L_A \underline{v}_1 = 1 \cdot \underline{v}_1 + 0 \cdot \underline{v}_2, \quad L_A \underline{v}_2 = 0 \cdot \underline{v}_1 + 2 \cdot \underline{v}_2,$$

and thus L_A is given by the diagonal matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ is the basis $\{\underline{v}_1, \underline{v}_2\}$.