Lecture 25

Example 25.1 (Diagonalization of 2×2 matrices). If we have a 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and choose a basis $\underline{v}_1, \underline{v}_2$ for \mathbb{C}^2 , then the matrix for L_A w.r.t. this basis is given as follows. We can write

$$L_A(\underline{v}_1) = A\underline{v}_1 = \alpha_1 \cdot \underline{v}_1 + \alpha_2 \cdot \underline{v}_2,$$

$$L_A(\underline{v}_2) = A\underline{v}_2 = \alpha_3 \cdot \underline{v}_1 + \alpha_4 \cdot \underline{v}_2$$
(*)

for some uniquely determined $\alpha_i \in \mathbb{C}$ (because $\underline{v}_1, \underline{v}_2$ is a basis, so any vector is a unique linear combination of $\underline{v}_1, \underline{v}_2$). Now, the matrix for L_A w.r.t. this basis is

$$\begin{pmatrix} \alpha_1 & \alpha_3 \\ \alpha_2 & \alpha_4 \end{pmatrix}.$$

So, if A is diagonalizable, it means that we can choose $\underline{v}_1, \underline{v}_2$ such that $\alpha_2 = \alpha_3 = 0$ (which means exactly that \underline{v}_1 (\underline{v}_2 , resp.) is an eigenvector for A with eigenvalue α_1 (α_4 , resp.).

Now, if A is diagonalizable, we can form a matrix P whose columns are the basis vectors $\underline{v}_1, \underline{v}_2$ (who are the eigenvectors of A according to our choice). That is, if we write

$$\underline{v}_1 = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \underline{v}_2 = \begin{pmatrix} z \\ w \end{pmatrix},$$

for some coordinates x, y, z, w, then

$$P = \begin{pmatrix} x & z \\ y & w \end{pmatrix}$$

and equations (*) become

$$A\begin{pmatrix} x\\ y \end{pmatrix} = \alpha_1 \begin{pmatrix} x\\ y \end{pmatrix} \iff \begin{pmatrix} ax+by\\ cx+dy \end{pmatrix} = \alpha_1 \begin{pmatrix} x\\ y \end{pmatrix}$$
$$A\begin{pmatrix} z\\ w \end{pmatrix} = \alpha_4 \begin{pmatrix} z\\ w \end{pmatrix} \iff \begin{pmatrix} az+bw\\ cz+dw \end{pmatrix} = \alpha_4 \begin{pmatrix} z\\ w \end{pmatrix},$$

 \mathbf{SO}

$$AP = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & z \\ y & w \end{pmatrix} = \begin{pmatrix} ax + by & az + bw \\ cx + dy & cz + dw \end{pmatrix} = \begin{pmatrix} \alpha_1 x & \alpha_4 z \\ \alpha_1 y & \alpha_4 w \end{pmatrix} = \begin{pmatrix} x & z \\ y & w \end{pmatrix} \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_4 \end{pmatrix} = P \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_4 \end{pmatrix}$$

In fact, one can show that P has an inverse: indeed, the columns of P are linearly independent (since $\underline{v}_1, \underline{v}_2$ form a basis of \mathbb{C}^2), and thus the rank of P is equal to 2, which implies that det $P \neq 0$ and thus P is invertible (see Corollary 21.6). Therefore, we can multiply by P^{-1} on both sides to obtain

$$P^{-1}AP = \begin{pmatrix} \alpha_1 & 0\\ 0 & \alpha_4 \end{pmatrix}.$$

Thus, we come to the following algorithm of diagonalization of 2×2 matrices.

- **Step 1**: Compute charasteritic polynomial of A and eigenvalues λ_1 and λ_2 .
- **Step 2**: Find two linearly independent eigenvectors \underline{v}_1 and \underline{v}_2 of A.
- Step 3: Compose a matrix P (which is called a *transformation matrix* whose columns are \underline{v}_1 and \underline{v}_2 . Then $P^{-1}AP$ is diagonal with diagonal entries λ_1 and λ_2 .

Remark. • In Step 1, the eigenvalues λ_1 and λ_2 may coincide.

- In Step 2, we may not be able to find two linearly independent eigenvectors \underline{v}_1 and \underline{v}_2 of A. Then the whole procedure fails, which means that the matrix is not diagonalizable.
- If $\lambda_1 \neq \lambda_2$ then eigenvectors \underline{v}_1 and \underline{v}_2 are linearly independent, so the matrix is diagonalizable. Indeed, assuming that \underline{v}_1 and \underline{v}_2 are linearly dependent we conclude that they belong to the same eigenspace, and thus have the same eigenvalue, which leads to a contradiction.

Example 25.2. $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$. Then the characteristic polynomial is $\det(A - \lambda I) = (1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = (\lambda - 2)\lambda$, so the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$. Solving the homogenuous systems $(A - \lambda_i I)\underline{v}_i = \underline{0}$, we find the corresponding eigenspaces, and then we choose one eigenvector from each: we can take, for example, $\underline{v}_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$, $\underline{v}_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$. Then we get a matrix $P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$ whose columns are \underline{v}_1 and \underline{v}_2 , and one can check that

$$P^{-1}AP = \left(\frac{1}{-2i}\begin{pmatrix}-i & -1\\-i & 1\end{pmatrix}\right)\begin{pmatrix}1 & i\\-i & 1\end{pmatrix}\begin{pmatrix}1 & 1\\i & -i\end{pmatrix} = \begin{pmatrix}0 & 0\\0 & 2\end{pmatrix} = \begin{pmatrix}\lambda_1 & 0\\0 & \lambda_2\end{pmatrix}$$

All of this works similarly for any $n \times n$ matrix for $n \geq 3$.

We summarize the argument from Example 25.1:

Proposition 25.3. Let $A \in Mat_n(\mathbb{C})$ be diagonalizable, i.e. there is a basis $\underline{v}_1, \ldots, \underline{v}_n$ for \mathbb{C}^n such that each \underline{v}_i is an eigenvector for A. If P is the matrix whose columns are the vectors $\underline{v}_1, \ldots, \underline{v}_n$, then

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix},$$

where λ_i is the eigenvalue for the eigenvector \underline{v}_i .

The essential requirement in the above proposition is that the vectors $\underline{v}_1, \ldots, \underline{v}_n$ are linearly independent (they will then be a basis). If A has n distinct eigenvalues (as we had in (22.4) and (23.5)), then it will have n linearly independent eigenvectors, and hence be diagonalizable. This is because of the following fact:

Fact. Eigenvectors with distinct eigenvalues are linearly independent.

Corollary 25.4. If $A \in Mat_n(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable.

Indeed, by the definition of an eigenvalue, for every eigenvalue λ_i we can find a non-zero eigenvector \underline{v}_i . Due to the fact above, they all are linearly independent, and since there are n of them they compose a basis of \mathbb{C}^n .

Remark. According to the Fundamental Theorem of Algebra, any complex polynomial in one variable of degree n always has n roots (some of which may coincide). In particular, this can be applied to the characteristic polynomial of $A \in \operatorname{Mat}_n(\mathbb{C})$. In other words, if $\det(A - \lambda I)$ has k distinct roots, we can write

$$\det(A - \lambda I) = (\lambda_1 - \lambda)^{l_1} (\lambda_2 - \lambda)^{l_2} \dots (\lambda_k - \lambda)^{l_k} = \prod_{i=1}^k (\lambda_i - \lambda)^{l_i},$$

where the sum of all l_i is equal to n (numbers l_i are called *multiplicities* of roots λ_i).