
Lecture 25

Example 25.1 (Diagonalization of 2× 2 matrices). If we have a 2× 2 matrix

A =

(

a b

c d

)

and choose a basis v1, v2 for C2, then the matrix for LA w.r.t. this basis is given as follows. We can
write

LA(v1) = Av1 = α1 · v1 + α2 · v2,

LA(v2) = Av2 = α3 · v1 + α4 · v2 (*)

for some uniquely determined αi ∈ C (because v1, v2 is a basis, so any vector is a unique linear
combination of v1, v2). Now, the matrix for LA w.r.t. this basis is

(

α1 α3

α2 α4

)

.

So, if A is diagonalizable, it means that we can choose v1, v2 such that α2 = α3 = 0 (which means
exactly that v1 (v2, resp.) is an eigenvector for A with eigenvalue α1 (α4, resp.).

Now, if A is diagonalizable, we can form a matrix P whose columns are the basis vectors v1, v2
(who are the eigenvectors of A according to our choice). That is, if we write

v1 =

(

x

y

)

, v2 =

(

z

w

)

,

for some coordinates x, y, z, w, then

P =

(

x z

y w

)

and equations (∗) become

A

(

x

y

)

= α1

(

x

y

)

⇐⇒

(

ax+ by

cx+ dy

)

= α1

(

x

y

)

A

(

z

w

)

= α4

(

z

w

)

⇐⇒

(

az + bw

cz + dw

)

= α4

(

z

w

)

,

so

AP =

(

a b

c d

)(

x z

y w

)

=

(

ax+ by az + bw

cx+ dy cz + dw

)

=

(

α1x α4z

α1y α4w

)

=

(

x z

y w

)(

α1 0
0 α4

)

= P

(

α1 0
0 α4

)

.

In fact, one can show that P has an inverse: indeed, the columns of P are linearly independent
(since v1, v2 form a basis of C2), and thus the rank of P is equal to 2, which implies that detP 6= 0
and thus P is invertible (see Corollary 21.6). Therefore, we can multiply by P−1 on both sides to
obtain

P−1AP =

(

α1 0
0 α4

)

.
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Thus, we come to the following algorithm of diagonalization of 2× 2 matrices.

Step 1: Compute charasteritic polynnomial of A and eigenvalues λ1 and λ2.

Step 2: Find two linearly independent eigenvectors v
1

and v
2

of A.

Step 3: Compose a matrix P (which is called a transformation matrix whose columns are v
1

and v
2
.

Then P−1AP is diagonal with diagonal entries λ1 and λ2.

Remark. • In Step 1, the eigenvalues λ1 and λ2 may coincide.

• In Step 2, we may not be able to find two linearly independent eigenvectors v
1

and v
2

of A.
Then the whole procedure fails, which means that the matrix is not diagonalizable.

• If λ1 6= λ2 then eigenvectors v
1

and v
2

are linearly independent, so the matrix is diagonalizable.
Indeed, assuming that v

1
and v

2
are linearly dependent we conclude that they belong to the

same eigenspace, and thus have the same eigenvalue, which leads to a contradiction.

Example 25.2. A =

(

1 i

−i 1

)

. Then the characteristic polynomial is det(A−λI) = (1−λ)2−1 =

λ2 − 2λ = (λ − 2)λ, so the eigenvalues are λ1 = 0 and λ2 = 2. Solving the homogenuous systems
(A − λiI)vi = 0, we find the corresponding eigenspaces, and then we choose one eigenvector from

each: we can take, for example, v
1
=

(

1
i

)

, v
2
=

(

1
−i

)

. Then we get a matrix P =

(

1 1
i −i

)

whose

columns are v
1

and v
2
, and one can check that

P−1AP =

(

1

−2i

(

−i −1
−i 1

))(

1 i

−i 1

)(

1 1
i −i

)

=

(

0 0
0 2

)

=

(

λ1 0
0 λ2

)

.

All of this works similarly for any n× n matrix for n ≥ 3.
We summarize the argument from Example 25.1:

Proposition 25.3. Let A ∈ Matn(C) be diagonalizable, i.e. there is a basis v
1
, . . . , v

n
for C

n such

that each v
i
is an eigenvector for A. If P is the matrix whose columns are the vectors v

1
, . . . , v

n
,

then

P−1AP =







λ1

. . .

λn






,

where λi is the eigenvalue for the eigenvector v
i
.

The essential requirement in the above proposition is that the vectors v
1
, . . . , v

n
are linearly

independent (they will then be a basis). If A has n distinct eigenvalues (as we had in (22.4) and
(23.5)), then it will have n linearly independent eigenvectors, and hence be diagonalizable. This is
because of the following fact:

Fact. Eigenvectors with distinct eigenvalues are linearly independent.

Corollary 25.4. If A ∈ Matn(C) has n distinct eigenvalues, then A is diagonalizable.
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Indeed, by the definition of an eigenvalue, for every eigenvalue λi we can find a non-zero eigen-
vector vi. Due to the fact above, they all are linearly independent, and since there are n of them
they compose a basis of Cn.

Remark. According to the Fundamental Theorem of Algebra, any complex polynomial in one vari-
able of degree n always has n roots (some of which may coincide). In particular, this can be applied
to the characteristic polynomial of A ∈ Matn(C). In other words, if det(A − λI) has k distinct
roots, we can write

det(A− λI) = (λ1 − λ)l1(λ2 − λ)l2 . . . (λk − λ)lk = Πk

i=1
(λi − λ)li ,

where the sum of all li is equal to n (numbers li are called multiplicities of roots λi).
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