
Lecture 26

We have seen that we can easily diagonalize a matrix having n distinct eigenvalues. Even if the

eigenvalues are not distinct, a matrix may still be diagonalizable:

Example 26.1. Let A =





1 0 0
1 −1 −1
1 −2 0



. Its eigenvalues are given by the roots of the polynomial

(1− λ)((−1− λ)(−λ)− 2) = (1− λ)(λ2 + λ− 2) = (1− λ)2(λ+ 2),

that is, eigenvalues: 1,−2.
We now find the eigenspaces. For λ = 1:





0 0 0
1 −2 −1
1 −2 −1



x = 0 ⇐⇒ x− 2y − z = 0.

Thus, the eigenspace has two free parameters:

E1 =











2y + z

y

z



 | y, z ∈ C







.

Thus E1 is a two-dimensional space, so we can find two linearly independent vectors in it, for

example




2
1
0



 and





1
0
1



 .

Then

E1 =







y





2
1
0



+ z





1
0
1



 | y, z ∈ C







= span











2
1
0



 ,





1
0
1











.

Moreover, for λ = −2, we get





3 0 0
1 1 −1
1 −2 2



x = 0 ⇐⇒





0 6 −6
0 3 −3
1 −2 2



x = 0

⇐⇒





1 0 0
0 1 −1
0 0 0



x = 0 ⇐⇒

{

x = 0

y − z = 0.
⇐⇒ x =





0
y

y



 , y ∈ C.

Thus E
−2 =











0
y

y



 | y ∈ C







= span











0
1
1











.

Since





0
1
1



 is an eigenvector for an eigenvalue which is distinct from that for the eigenvectors





2
1
0




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and





1
0
1



, we see that





2
1
0



 ,





1
0
1



 ,





0
1
1





are linearly independent. Thus, they form a basis for C
3 and hence A is diagonalizable.

In fact, if we form the matrix

P =





2 1 0
1 0 1
0 1 1



 ,

then Proposition 25.3 tells us that

P−1AP =





1 0 0
0 1 0
0 0 −2



 .

Summarizing, we just need to choose a basis in each eigenspace, and then collect all of these
together to compose a basis of the whole space C

n. This can be done in the only case when we
have “enough” linearly independent eigenvectors in every eigenspace, i.e. if the sum of all of the
dimensions dimEλi

is equal to n. In fact, the following (non-trivial) statement always holds.

Fact. Let det(A− λI) = Πk
i=1

(λi − λ)li , where the sum of all li is equal to n (recall that numbers
li are called multiplicities of roots λi). Then for every i = 1, . . . , k one has dimEλi

≤ li.

Therefore, the example above can be generalized in the following way:

Theorem 26.2. Let A ∈ Matn(C), let λ1, . . . , λk be the eigenvalues of A, and let the characteristic

polynomial of A be det(A − λI) = Πk
i=1

(λi − λ)li , where the sum of all li is equal to n. Then A is

diagonalizable if and only if for every i = 1, . . . , k the dimension of the eigenspace Eλi
is equal to li.

Note that, by definition, Eλi
= ker(A − λiI), and thus dimEλi

= n − rk(A − λiI). Thus,
Theorem 26.2 can be reformulated in the following easy-to-use way:

Corollary 26.3. A matrix A ∈ Matn(C) with eigenvalues λ1, . . . , λk and characteristic polynomial

det(A − λI) = Πk
i=1

(λi − λ)li is diagonalizable if and only if for every i = 1, . . . , k we have n −

rk(A− λiI) = li.

Corollary 26.3 leads to the following algorithm.

Criterion of diagonalizability of a matrix. Let A ∈ Matn(C). To decide whether A is diago-
nalizable, we need to do the following.

Step 1. Compute the characteristic polynomial det(A− λI) = (λ1 − λ)l1(λ2 − λ)l2 . . . (λk − λ)lk .

Step 2. For every i = 1, . . . , k compute the number n− rk(A− λiI).

Step 3. If for every i = 1, . . . , k we have n− rk(A− λiI) = li, then A is diagonalizable. Otherwise, it
is not.

Remark. In Steps 2 and 3, we need to consider only eigenvalues λi with li > 1. Indeed, since we
know that 1 ≤ n − rk(A − λiI) ≤ li, the equality li = 1 guarantees that n − rk(A − λiI) = 1 = li
(in particular, we immediately get Corollary 25.4).
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