Single Maths A — Easter 2018

Lecture 1

1.1 Groups of symmetries

Groups are algebraic gadgets which are collections of symmetries of some objects. These can be
symmetries of some mathematical object, or of a physical object, such as a molecule. Consider this
picture of a hydrogen molecule (Hy) and an ammonia molecule (NHj):
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Mathematically, a symmetry is a transformation that carries an object into itself. For example,
the hydrogen molecule (consisting of two hydrogen atoms) has the following symmetries:

i) Any rotation along its long axis,

ii) Rotation by m about an axis perpendicular to the long axis, and passing through M (which lies
midway between the atoms). This symmetry can also be seen as a reflection (mirror image)
w.r.t. the plane passing through M, perpendicular to the long axis.

ii1) Any combination of the above.

The ammonia molecule is a little bit more complicated. It is a tetrahedron with a nitrogen atom
at the top and a base which is an equilateral triangle with hydrogen atoms in the corners. Let A
be the axis going through the N-vertex perpendicular to the base triangle. The symmetries of the
ammonia molecule are then:

i) Rotations of 27/3, 47/3 or 2w about the axis A.

ii) Reflections in each of the three planes containing A and one of the hydrogen atoms.



ii1) Any combination of the above.

Remark. If ammonia had another H atom instead of the N at the top, then it would have more
symmetries. However, such a molecule doesn’t exist in nature.

We note three important properties of these collections of symmetries:

e There is an identity symmetry (which brings us back to the initial position, for example
rotation by 27 in the ammonia example).

e Composing two symmetries, that is, applying one followed by another, is again a symmetry.
e Every symmetry has an inverse (“do the opposite”).

These three properties are the properties that define a group. We will give a few more examples,
leading up to the precise mathematical definition of group.

1.2 Symmetries of regular n-gons in the plane

Consider an equilateral triangle (aka regular 3-gon):
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The vertices are labeled 1, 2,3 and there are three reflection axes, u1, 2, 3. The symmetries of
the triangle are then:

i) Rotations of 27 /3, 47/3 or 2w about the centre point of the triangle (compare with the
rotation symmetries of the ammonia molecule). Rotating anti-clockwise by 27 /3 has the
following effect on the vertices:

1— 2 2 — 3, 3 — 1,

that is, the vertices are cycled one step, so the triangle (1,2,3) is transformed into (3,1,2)
(here we denote a triangle by starting from the lower left vertex and going anti-clockwise).
Let’s call this rotation r.

Rotating by 47/3 cycles two steps, that is,

(1,2,3) — (2,3,1).

This is the same thing as performing the rotation r twice. Viewing the rotation r as a function,
the second rotation is r o 7 = 72 (r composed with itself).

Finally, 27, that is, rotating three steps, brings us back to the initial position, so this rotation
is roror =13 =1d, the identity.
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iii)

Reflecting in the axis pj, the triangle (1,2,3) is transformed into (1,3, 2); call this transfor-
mation s. Applying s twice is the identity, because the mirror image of a mirror image is the
original image. Thus s o s = s% = Id.

Reflecting in pg, is (1,2,3) — (3,2, 1); call this t.

Reflecting in g, is (1,2,3) — (2,1, 3); call this u. As for any reflections, we have t? = u? =
Id.

So far we have six symmetries, three rotations and three reflections:
2
Id,r,r, s, t, u.

Are there any more? The only way we could get any more would be by combining a rotation
with a reflection, or by combining two reflections (combining two rotations clearly gives another
rotation).

If we perform the rotation r followed by the reflection s, we first get the triangle (3,1, 2), and
then swap the second and third vertices by the reflection s, to get the triangle (3,2,1). This
has the same effect as the reflection . Thus the composition is

sor =sr ==t.

On the other hand, if we first reflect by s and then rotate by r, we first get (1,3,2) and then
(2,1,3). Thus
ros=rs=u.

Thus we can generate the reflections ¢t and u by forming combinations of only r and s.

Next, we check what happens if we combine 72 with s. The symmetry 72 gives (2,3,1),
and applying s to this gives (2,1,3). Thus
sl =u=rs.

Taking s first and then r? gives (1,3, 2), followed by (3,2,1), so

r‘s =t = sr.

Moreover, combining the identity with s, or 72 does not give anything new, that is,

Idr=rId =, Idr2:r21d:r2, Ids =sId = s.

Finally, perhaps the inverse of a symmetry (i.e., doing it backwards) would give something
new? The inverse of a rotation (which for us is anti-clockwise) is just a clockwise rotation,
and it is clear that going two steps forward (r?) is the same as one step backwards (r~!), that
is,

r~t =2

Moreover, the inverse s ! = s (because to reverse the effect of s we just apply s again).
We therefore see that we indeed only have six symmetries in total:

D3 = {Id, r, 72, s,7s,1r%s}.

This is called the dihedral group Ds, or the symmetry group of the regular triangle.



