
Lecture 2

There are several important things to note about this example:

• Composing two symmetries is again a symmetry (we write composition like multiplication).

• Inverting a symmetry is again a symmetry (e.g., inverting r we get r−1, and s is its own
inverse).

• In the group D3, we write composition multiplicatively, but rs 6= sr, so composition is an
operation which is a bit like multiplication, but does not work the way we are used to.

• We said that D3 contains all symmetries, but you might object that, for example, the product
r2(r2s) is not in the group. But

r2(r2s) = r3rs = Id rs = rs ∈ D3.

Another example is

(rs)(r2s) = rsr2s = r(rs)s = r2s2 = r2 Id = r2 ∈ D3,

where we have used the relation sr2 = rs we found above, together with s2 = Id.

• To describe the group D3 completely, we only need r and s and three fundamental relations
from which everything else follows. We write this as

D3 = 〈r, s | r3 = Id, s2 = Id, srs = r2〉.

We say that D3 is generated by r and s. These three relations were determined above.

One can go on and do the same analysis for the symmetries of a square. The group of symmetries
here is called the dihedral group D4. Similarly, for a regular n-gon, for n ≥ 3, we get the dihedral
group Dn. It turns out that

Dn = 〈r, s | rn = Id, s2 = 1, srs = r2〉,

so the main difference is that in general we have n rotations. It also turns out that Dn consists of
2n elements in total, namely

Dn = {Id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

2.1 The definition of group

So, what is a group, mathematically? It is a collection of objects (e.g., symmetries, functions,
numbers, matrices, etc) such that we can combine two of them to get a third in the collection, and
such that every object has an inverse. More precisely,

Definition 2.1. A set G is called a group if the following holds:

i) (Binary operation) For any two elements x, y ∈ G there is a uniquely defined element x ∗ y =
xy ∈ G.
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ii) (Associativity) For every three elements x, y, z ∈ G we have x(yz) = (xy)z.

iii) (Identity) There exists an element Id ∈ G such that for every x ∈ G we have Id ∗x = x∗Id = x.

iv) (Inverses) For every x ∈ G there is a x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = Id.

It is important to understand that the binary operation which we have denoted as multiplication
does not have to have anything to do with ordinary multiplication. It can be any binary operation
(for D3 it was composition), such as normal addition. For example, the set of integers

Z = {0,±1,±2, . . . }

is a group under the binary operation +. Let’s check the conditions:

i) For any a, b ∈ Z, we have a+ b ∈ Z.

ii) For any a, b, c ∈ Z we have a+ (b+ c) = (a+ b) + c.

iii) We have Id = 0 such that for every a ∈ Z, 0 + a = a+ 0 = a.

iv) For every a ∈ Z we have −a ∈ Z such that a+ (−a) = (−a) + a = 0.

So here ∗ = + and Id = 0.
Note that the set of integers Z is not a group under normal multiplication, because if ∗ = ×,

then Id = 1 and 2−1 = 1

2
/∈ Z, so the fourth condition fails.

We will now give several further examples of groups:

Example 2.2.

i) The set of rational numbers

Q = {
a

b
| a, b ∈ Z, b 6= 0}

is a group under addition with Id = 0. The subset

Q× = Q \ {0},

(Q with the zero removed) is a group under multiplication, with Id = 1 (we had to remove zero
because it does not have a multiplicative inverse). Ditto for Q replaced by the real numbers
R or the complex numbers C.

ii) A vector space V is a group under addition (see Lecture 18 from last term) (but it also has
scalar multiplication, which is not relevant for its group structure).

iii) The set of invertible matrices

GLn(C) = {A ∈ Mn(C) | detA 6= 0}

is called the general linear group over C (it could be over Q or R as well). It is a group under
matrix multiplication with Id = In, the identity matrix. The only thing to check is: 1) that
if A and B have inverses, then so do AB (this is true because the inverse of AB is B−1A−1)
and 2) that A(BC) = (AB)C (which we take for granted here).
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