Lecture 3
The difference method
This is a method which is sometimes useful to calculate finite or infinite series.

Example 3.1. Consider the series > >°
Observe that
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(partial fraction decomposition). Using this, we can write
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In particular, letting N — oo, we get the sum of the infinite series: Y > =1.
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Whenever we have a series > - | a,, where we can write
an = f(n) = f(n+1)
for some function f (in the above, we had f(n) = 1), then
sy = [f(1) = f(N+1)

and we can compute the sum of the infinite series as limy_,oo f(1) — f(N + 1) which is equal to
f(1) —limy_eo f(IN + 1). This is called the difference method of computing the sum.
Here is an extension of the method when we jump more than one step each time:

Example 3.2. Let s = > .°°  —L - We can write
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ng(ﬁ—n+3):f(n)—f(n+3)

where f(n) = s-. Thus
sy =f(1) = f(4)+ f(2) = F) + fB) = F(6) + f(4) = f(7) + -+
N =2) = f(N+ 1)+ f(N=1) = fF(N+2) + f(N) = f(N +3)
=fW)+fQ)+fB) = fF(N+1) = f(N+2) - f(N +3).
Letting N — oo, we is we get

1 1 11

s= Jim sy = f(1)+ @)+ fB) = 5+ ¢+ 5= 1o

since f(N) = 0 as N — oo (so f(N + 1) etc vanish in the limit).

Here is another example using the difference method:



Example 3.3. Compute sy = S n3. We need to find a function f such that n® = f(n)—f(n+1).
First, note that if f(n) = (n(n — 1))2, then

f(n) = f(n+1) = —4n®,

which isn’t quite right. But if we modify this to cancel the —4 factor and take g(n) = —1(n(n—1))?,
we do get
g(n) —gn+1)=n’

Then the difference method now says that sy = g(1)—g(N+1) = —1(0—(N(N+1))?) = W‘

Manipulating series

In order to simplify series and to be able to sum them it is sometimes useful to transform a series
into another one, for example by differentiating or integrating it. In order to manipulate infinite
series, we always need to ensure that the series converge.

Example 3.4. Let s(z) =Y 7, % =x+ % + - --. Differentiating, we get
ds = (z"\ & 1
=2 = = if |x| < 1 by (2.5).
dx Z(n—i—l) Zx 1-z <1 ¥ (25)
n=0 n=0
Integrating, we get s(z) = [ 2-dz = —In(1 — z) + c¢. To determine the constant ¢, note that

s(0) = 0, so we must have ¢ = 0 and
s(zr) = —In(l —z) for |z| < 1.
Warning: Here is an example of how things can go wrong if the series does not converge. Let
o0
s=) 2 =14244+4--.
n=0

If we multiply both sides by 2, we get
2s=24+448+---=s5s—1=s=—1,

which is clearly nonsense since we are summing positive numbers. Moral of the story: Do not
manipulate diverging series. It is therefore important to know when a series converges, and this is
what we will look at now.

Convergence, necessary conditions, tests

Proposition 3.5 (Necessary condition for convergence). If >>° | a, converges, then an, — 0 as
n — 0.

In other words, if a,, does not go to zero, then the series diverges. This immediately tells us
that the series 2 +4 + 8 4 -+ diverges, and similarly > ° (-1)" =1—-1+1—1+4--- diverges.
However, the converse of this proposition is not true.



