
Lecture 3

The difference method

This is a method which is sometimes useful to calculate finite or infinite series.

Example 3.1. Consider the series
∑∞

n=1
1

n(n+1) . Then the partial sums are sN = 1
1·2 + 1

2·3 + · · ·+
1

N(N+1) . Observe that
1

n
− 1

n+ 1
=

1

n(n+ 1)
.

(partial fraction decomposition). Using this, we can write

sN =
1

1
−1

2
+

1

2︸ ︷︷ ︸
=0

−1

3
+ · · ·+ 1

N − 1
− 1

N
+

1

N︸ ︷︷ ︸
=0

− 1

N + 1
= 1− 1

N + 1
=

N

N + 1
.

In particular, letting N →∞, we get the sum of the infinite series:
∑∞

n=1
1

n(n+1) = 1.

Whenever we have a series
∑∞

n=1 an where we can write

an = f(n)− f(n+ 1)

for some function f (in the above, we had f(n) = 1
n), then

sN = f(1)− f(N + 1)

and we can compute the sum of the infinite series as limN→∞ f(1) − f(N + 1) which is equal to
f(1)− limN→∞ f(N + 1). This is called the difference method of computing the sum.

Here is an extension of the method when we jump more than one step each time:

Example 3.2. Let s =
∑∞

n=1
1

n(n+3) . We can write

1

n(n+ 3)
=

1

3
(
1

n
− 1

n+ 3
) = f(n)− f(n+ 3),

where f(n) = 1
3n . Thus

sN = f(1)− f(4) + f(2)− f(5) + f(3)− f(6) + f(4)− f(7) + · · ·+
+ f(N − 2)− f(N + 1) + f(N − 1)− f(N + 2) + f(N)− f(N + 3)

= f(1) + f(2) + f(3)− f(N + 1)− f(N + 2)− f(N + 3).

Letting N →∞, we is we get

s = lim
N→∞

sN = f(1) + f(2) + f(3) =
1

3
+

1

6
+

1

9
=

11

18
,

since f(N)→ 0 as N →∞ (so f(N + 1) etc vanish in the limit).

Here is another example using the difference method:
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Example 3.3. Compute sN =
∑N

n=1 n
3. We need to find a function f such that n3 = f(n)−f(n+1).

First, note that if f(n) = (n(n− 1))2, then

f(n)− f(n+ 1) = −4n3,

which isn’t quite right. But if we modify this to cancel the −4 factor and take g(n) = −1
4(n(n−1))

2,
we do get

g(n)− g(n+ 1) = n3.

Then the difference method now says that sN = g(1)−g(N+1) = −1
4(0−(N(N+1))2) = (N(N+1))2

4 .

Manipulating series

In order to simplify series and to be able to sum them it is sometimes useful to transform a series
into another one, for example by differentiating or integrating it. In order to manipulate infinite
series, we always need to ensure that the series converge.

Example 3.4. Let s(x) =
∑∞

n=0
xn+1

n+1 = x+ x2

2 + · · · . Differentiating, we get

ds

dx
=
∞∑
n=0

(
xn+1

n+ 1

)′
=
∞∑
n=0

xn =
1

1− x
if |x| < 1 by (2.5).

Integrating, we get s(x) =
´

1
1−xdx = − ln(1 − x) + c. To determine the constant c, note that

s(0) = 0, so we must have c = 0 and

s(x) = − ln(1− x) for |x| < 1.

Warning: Here is an example of how things can go wrong if the series does not converge. Let

s =

∞∑
n=0

2n = 1 + 2 + 4 + · · · .

If we multiply both sides by 2, we get

2s = 2 + 4 + 8 + · · · = s− 1 =⇒ s = −1,

which is clearly nonsense since we are summing positive numbers. Moral of the story: Do not
manipulate diverging series. It is therefore important to know when a series converges, and this is
what we will look at now.

Convergence, necessary conditions, tests

Proposition 3.5 (Necessary condition for convergence). If
∑∞

n=1 an converges, then an → 0 as
n→∞.

In other words, if an does not go to zero, then the series diverges. This immediately tells us
that the series 2 + 4 + 8 + · · · diverges, and similarly

∑∞
n=0(−1)n = 1 − 1 + 1 − 1 + · · · diverges.

However, the converse of this proposition is not true.
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