
Lecture 4

Convergence, necessary conditions, tests

Proposition 3.5 (Necessary condition for convergence). If
∑

∞

n=1
an converges, then an → 0 as

n → ∞.

In other words, if an does not go to zero, then the series diverges. This immediately tells us
that the series 2 + 4 + 8 + · · · diverges, and similarly

∑

∞

n=0
(−1)n = 1 − 1 + 1 − 1 + · · · diverges.

However, the converse of this proposition is not true as the following example shows.

Example 4.1. (The harmonic series). The series
∑

∞

n=1
1

n is called the harmonic series. We will
show that it diverges. Some of the first partial sums are

s1 = 1, s2 = 1 +
1

2
=

3

2
, s4 = s2 +

1

3
+

1

4
>

3

2
+

1

4
+

1

4
= 2.

We can therefore guess that we always have

s2n ≥
n

2
+ 1.

We now prove this by induction. Assume it is true for some n ≥ 1. Now

s2n+1 = s2n +
1

2n + 1
+

1

2n + 2
+ · · ·+

1

2n + 2n

> s2n +
1

2n + 2n
+

1

2n + 2n
+ · · ·+

1

2n + 2n

= s2n +
2n

2n+1
≥

n

2
+ 1 +

1

2
(by the induction hypothesis)

=
n+ 1

2
+ 1.

This shows that s2n ≥ n
2
+ 1, for all n ≥ 1, and thus the partial sums tend to ∞ as n → 0.

Assume now that all the terms in the series are ≥ 0. We have the following convergence tests:

Comparison test

Assume that S =
∑

∞

n=0
bn converges and an ≤ bn for all n large enough. Then s =

∑

∞

n=0
an

converges. Reason: sN ≤ SN for each N .

Equivalently, if s =
∑

∞

n=0
an diverges, and an ≤ bn, then S =

∑

∞

n=0
bn diverges.

Example 4.2. Let s =
∑

∞

n=0
2n+3n

4n
. Then

an =
2n + 3n

4n
≤

3n + 3n

4n
= 2

(

3

4

)n

= bn.

But
∑

∞

n=0
bn = 2

∑

n

(

3

4

)n
= 2

1−3/4 (geometric series with |x| < 1, see (2.5)).
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Quotient test

Let s =
∑

∞

n=0 an and S =
∑

∞

n=0 bn as before. Compute p = limn→∞

an
bn

. Then:

• if p = 0 and S converges, then s converges.

• if p = ∞ and s converges, then S converges.

• If 0 < p < ∞, then s converges if and only if S does.

• If p doesn’t exist (i.e., an
bn

does not have a limit), then we can’t say anything.

Example 4.3. Let s =
∑

∞

n=1
1
n2 =

∑
n an and S =

∑
∞

n=1
1

n(n+1) =
∑

n bn. Now

p = lim
an
bn

= lim
1/n2

1
n(n+1)

= lim
n+ 1

n
= 1.

Thus, by the quotient test, s converges if and only if S does. But we know that S converges by
(3.1), so we conclude that s also converges.

We can also use the comparison test to show that s converges: We have

s =

∞∑

n=1

1

n2
= s =

∞∑

n=0

1

(n+ 1)2
= 1 +

∞∑

n=1

1

(n+ 1)2
≤ 1 +

∞∑

n=0

1

n(n+ 1)
,

where we know that the last series converges, by (3.1). Thus the comparison test implies convergence
also for s.

Moreover,
∑

∞

n=1
1
nk converges for any k ≥ 2 because lim 1/nk

1/n2 = lim 1
nk−2

= 0, for any k > 2.

As we saw in the above example, it is often possible to use several different tests to show convergence
(but sometimes only one test works; it depends on the series).
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