
Lecture 5

Ratio test

Let s =
∑

∞

n=0 an and p = limn→∞

an+1

an
, if the limit exists. Then

• if p < 1, then s converges.

• if p > 1, then s diverges.

• if p = 1, then anything can happen (s may converge, may diverge).

Example 5.1. Let s =
∑

∞

n=0
n2

2n =
∑

an. Then

an+1

an
=

(n+ 1)2/2n+1

n2/2n
=

1

2

(n+ 1)2

n2
=

1

2
(1 +

1

n
)2 →

1

2
as n → ∞.

Since 1
2 < 1, we conclude that s converges.

Cauchy’s root test

Let s =
∑

∞

n=0 an and p = limn→∞
n
√
an, if the limit exists. Then

• if p < 1, then s converges.

• if p > 1, then s diverges.

• if p = 1 anything can happen.

Example 5.2. Does s =
∑

∞

n=1
2n
3n converge or diverge? The nth root of the nth term is

(

2n

3n

)1/n

=
(2n)1/n

3
,

so we need to compute the limit of (2n)1/n

3 as n → ∞. Taking the logarithm of the numerator, we
have

ln((2n)1/n) =
ln(2n)

n
,

and by l’Hôpital’s rule,

lim
n→∞

ln(2n)

n
= lim

n→∞

2/2n

1
= 0.

Exponentiating both sides, we get lim((2n)1/n) = e0 = 1, so

lim
(2n)1/n

3
=

1

3
< 1.

Thus, by the root test, s converges.

10



Integral test

Suppose we can find a decreasing function f : R+ → R+ such that f(n) = an. Then
∑

∞

n=1 an
converges if and only if

lim
N→∞

ˆ N

1
f(x)dx exists.

The idea here is that the integral is a good approximation of the series, so one converges iff the
other does.

Example 5.3. Let s =
∑

∞

n=1
1
nq , q > 0. Then we can take f(x) = 1

xq , which is decreasing. We
have, if q 6= 1:

ˆ N

1
f(x)dx =

[

1

−q + 1
x−q+1

]N

1

=
1

1− q
(N−q+1 − 1).

Thus:

• If q > 1, we get limN→∞

1
Nq−1 = 0, so lim

´ N

1 f(x)dx = 1
q−1 , hence the series s converges.

• If q < 1, then limN→∞

1
Nq−1 = ∞, so the integral has no limit, hence the series s diverges.

If q = 1, we have f(x) = 1
x
, so

´ N

1 f(x)dx = [lnx]N1 = lnN → ∞ as N → ∞, so the series s

diverges. To summarise, s converges if and only if q > 1.

Further examples

Here is a collection of further examples of convergence of infinite series, using the above methods.

i)
∑

∞

n=1
2n

n! . Ratio test: We have an = 2n

n! so an+1

an
= 2

n+1 → 0 as n → ∞. Thus the series
converges. Note: The same thing works with 2 replaced by any other real number, so the
series

∑

∞

n=1
an

n! converges for any a ∈ R.

ii)
∑

∞

n=1
1

2(n!)+1 . Quotient test (with the previous one): We have bn = 2n

n! and an = 1
2(n!)+1 , so

an

bn
=

n!

2n · (2(n!) + 1)
=

n!

2(n!) + 1

1

2n
<

1

2n
→ 0 as n → ∞.

Thus the series converges. Notice that as this limit is 0 and thus less than 1, the comparison
test would likewise imply converge in this case.
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