
Lecture 6

iii)
∑∞

n=1 r
n · lnn, where r < 1. Cauchy’s root test: n

√
rn · lnn = r · n

√
lnn. Now note that for

n ≥ 1, we have lnn ≤ n (for n = 1 we have ln 1 = 0 < 1; now take derivative of n − lnn to
show that the function grows). Thus

1 ≤ n
√
lnn ≤ n

√
n,

and since n
√
n, n = 1, 2, 3, . . . is a decreasing sequence (compute its derivative!), the sand-

wiched expression n
√
lnn tends to 1 as n→∞.

Therefore, r · n
√
lnn→ r as n→∞, and since r < 1 the series converges.

Series with negative terms

A series
∑

an is called alternating if an = (−1)n|an| or an = (−1)n+1|an|, that is, if the sign
alternates every other step, for example

1− 1

2
+

1

3
− 1

4
+ · · ·

Leibniz test for alternating series

If s =
∑∞

n=1 an is an alternating series such that an → 0 and |an+1| < |an|, for all n (i.e., the
sequence (an) is decreasing), then s converges.

Example 6.1. The “alternating harmonic series”
∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+ · · ·

converges (unlike the harmonic series itself), because |(−1)n+1 1
n | =

1
n → 0 as n→∞, and 1

n+1 < 1
n .

Some terminology (for arbitrary series of real or complex numbers)

Definition 6.2.
∑

an converges absolutely if
∑
|an| converges.

∑
an converges conditionally if∑

|an| diverges but
∑

an converges.

Example 6.3.

• The “alternating harmonic series” above converges conditionally because it converges even
though the harmonic series diverges.

•
∑ (−1)n+1

n2 converges absolutely, because
∑ 1

n2 converges; see (4.3).

Fact. An absolutely convergent series
∑

an converges.

Fact. If a series is absolutely convergent, we can rearrange the terms in the sum in any way we
want, and the series will still converge to the same value.
In conditionally convergent series the order of the terms matters! Moreover, for any q ∈ R or
q = ±∞ it is possible to rearrange the terms of a conditionally convergent series such that it will
converge to q.
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Power series

Let (cn), n = 0, 1, 2, . . . be a sequence of numbers. A series of the form

P (x) = c0 + c1x+ c2x
2 + · · · =

∞∑
n=0

cnx
n

is called a power series (the cn are called its coefficients).

Example 6.4. If cn = a is a constant, then P (x) =
∑∞

n=0 ax
n = a+ ax+ ax2 + · · · is a geometric

series. Recall that this converges if |x| < 1. For every x ∈ R such that |x| < 1, we have a series, so
we get a function

P : (−1, 1) −→ R, P (x) =
∞∑
n=0

cnx
n.

The partial sums sN =
∑N

n=0 cnx
n approximate the limit s =

∑∞
n=0 cnx

n, so the function P (which
is not in general a polynomial) can be approximated by polynomials, as long as x ∈ (−1, 1), that
is, locally in a neighbourhood of 0.

The above example is fundamental in mathematics. The fact that we can approximate many
(complicated) functions by polynomials locally around a point is the basis for much of analysis and
numerical computations in science.

Example 6.5. Recall from (3.4) that for x such that |x| < 1 we have

∞∑
n=1

xn

n
= − ln(1− x).

So, − ln(1− x) = x+ x2

2 + x3

3 + · · · = P (x) and the partial sums are

PN (x) = x+ · · ·+ xN

N
.

Now, P (x)− PN (x) = xN+1

N+1 + xN+2

N+2 + · · · , so

P (x)− PN (x)

xN+1

=
1

N + 1
+

x

N + 2
+ · · · −→ 1

N + 1
as x −→ 0.

Thus, as x→ 0, the ratio P (x)−PN (x)
xN+1

is close to 1
N+1 , and therefore

P (x)− PN (x) is approximated by
xN+1

N + 1
.

We write this

P (x)− PN (x) ∼ xN+1

N + 1
.

The difference P (x)− PN (x) should be thought of as the error when we approximate the function
P (x) by the partial sum PN (x). Clearly, increasing N , we can make this error as small as we want.
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