Lecture 7

Convergence of power series

We use the ratio test for $\sum_{n=0}^{\infty} |c_n x^n|$, that is, we look at absolute convergence:

$$p = \lim_{n \to \infty} \left| \frac{c_{n+1} x^{n+1}}{c_n x^n} \right| = \lim_{n \to \infty} |x| \cdot \left| \frac{c_{n+1}}{c_n} \right|.$$

We want to know the values of x for which the series converges.

- If $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = 0$, then p = 0 for all x, so it converges.
- If $\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| = c \in \mathbb{R}$, then p = |x|c, so p < 1 iff $|x| < \frac{1}{c}$. Thus it converges if $|x| < \frac{1}{c}$ and diverges if $|x| > \frac{1}{c}$. If $|x| = \frac{1}{c}$ anything can happen, so we need to check convergence separately.

Example 7.1. $P(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!}$. We have $c_n = \frac{1}{n!}$, so

$$\frac{c_{n+1}}{c_n} = \frac{1}{n+1} \longrightarrow 0.$$

Thus the series converges for all x. In fact, it converges to e^x .

Example 7.2.
$$P(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} = -\ln(1-x)$$
 by (3.4). We have $c_n = \frac{1}{n}$, so
 $\frac{c_{n+1}}{c_n} = \frac{n}{n+1} \longrightarrow 1.$

Thus the series converges if |x| < 1 and diverges if |x| > 1. For x = 1, the series is $\sum_{n=0}^{\infty} \frac{1}{n+1}$, which is just the harmonic series (diverges!). If x = -1, we have the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$, which converges by (6.1) (it's the "alternating harmonic series").

Thus our series converges precisely for x in the half-open interval [-1, 1).

Definition 7.3. The set of $x \in \mathbb{R}$ such that P(x) converges is called the *interval of convergence* of the power series. This interval has radius $R = \frac{1}{c} = \frac{1}{\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|}$ (i.e., half the length of the interval).

Remark. We can also use the root test to find the radius of convergence. Namely, $R = \frac{1}{d} =$ $\frac{1}{\lim_{n\to\infty} |c_n|^{1/n}}$ (if the limit exists).

Remark. We may also be able to compute the radius (and interval) of convergence if the limits above do not exist.

Example 7.4. $P(x) = \sum_{n=0}^{\infty} 2^n x^{2n}$ has all odd coefficients equal to zero, so the ratio test cannot be applied. As $\lim_{n\to\infty} |c_{2n}|^{1/2n} = \sqrt{2} \neq 0$, the root test cannot be applied either. However, we can write $y = x^2$, and then the series becomes $P(x) = \sum_{n=0}^{\infty} 2^n x^{2n} = \sum_{n=0}^{\infty} 2^n y^n = \sum_{n=0}^{\infty} a_n y^n$, so applying the root test we obtain that the series converges if $|y| < \frac{1}{\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|} = \frac{1}{2}$

and diverges if |y| > 1/2. Since $y = x^2$, we see that P(x) converges if $|x| < 1/\sqrt{2}$ and diverges if $|x| \ge 1/\sqrt{2}$, so the interval of convergence is $(-1/\sqrt{2}, 1/\sqrt{2})$.

Remark. In the case of two-variable analysis (or complex analysis), the convergence will be in a circular disc instead of an interval. This is where the terminology radius of convergence comes from.

For example, $P(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!}$ has interval of convergence $(-\infty, \infty) = \mathbb{R}$ and the radius is ∞ . The series $P(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$ has interval of convergence [-1, 1) and radius R = 1.

Series with complex numbers

Assume that we have a power series $P(z) = \sum_{n=0}^{\infty} c_n z^n$, where $z \in \mathbb{C}$ and $c_n \in \mathbb{C}$. We can consider the real series $\sum |c_n z^n|$, which we know converges if

$$|z|\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|<1.$$

Thus, $\sum c_n z^n$ converges aboslutely if $|z| < \frac{1}{\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|}$.

Example 7.5. $P(z) = \sum_{n=0}^{\infty} z^n$. We have $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = 1$, so the series converges absolutely for |z| < 1 and diverges for |z| > 1. For |z| = 1 it also diverges, because then z^n does NOT tend to 0 (for z^n to tend to 0 its modulus, which is the distance to the origin, would have to tend to 0).

Note that the set of $z \in \mathbb{C}$ such that |z| < 1, is a disc (with radius 1), rather than an interval.

Operations with power series

Suppose P(z) and Q(z) are two power series which converge in some disc |z| < R. Then:

- P(z) + Q(z) and aP(z) converge, for any $a \in \mathbb{C}$.
- Inside the disc of convergence, we can integrate and differentiate series.

Ì

Why can we differentiate series inside the interval/disc of convergence? Well, if $P(z) = \sum c_n z^n$, we know that the radius is

$$R = \frac{1}{\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|}.$$

Now, $\frac{dP(z)}{dz} = \sum nc_n z^{n-1}$ and the radius of this series is

$$\frac{1}{\lim_{n \to \infty} \left| \frac{(n+1)c_{n+1}}{nc_n} \right|} = \frac{1}{\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|} = R,$$

so the radius of convergence is the *same* as before. This means that taking the derivative does not "destroy" the disc of convergence.

Example 7.6. $P(x) = \sum x^n = \frac{1}{1-x}$ for |x| < 1. Thus,

$$\frac{dP(x)}{dx} = (x-1)^{-2} = (1+x+x^2+\cdots)' = 1+2x+3x^2+\cdots$$
$$= \sum_{n=1}^{\infty} nx^{n-1} = \sum_{k=0}^{\infty} (k+1)x^k.$$

This series is called the *expansion* of $(x-1)^{-2} = \frac{1}{(x-1)^2}$ (at x = 0). In the following, we will now see what this means in general.