
Lecture 7

Convergence of power series

We use the ratio test for
∑∞

n=0 |cnxn|, that is, we look at absolute convergence:

p = lim
n→∞

∣∣∣∣cn+1x
n+1

cnxn

∣∣∣∣ = lim
n→∞

|x| ·
∣∣∣∣cn+1

cn

∣∣∣∣ .
We want to know the values of x for which the series converges.

• If limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 0, then p = 0 for all x, so it converges.

• If limn→∞

∣∣∣ cn+1

cn

∣∣∣ = c ∈ R, then p = |x|c, so p < 1 iff |x| < 1
c . Thus it converges if |x| < 1

c

and diverges if |x| > 1
c . If |x| = 1

c anything can happen, so we need to check convergence
separately.

Example 7.1. P (x) =
∑∞

n=1
xn

n! . We have cn = 1
n! , so

cn+1

cn
=

1

n+ 1
−→ 0.

Thus the series converges for all x. In fact, it converges to ex.

Example 7.2. P (x) =
∑∞

n=0
1

n+1x
n+1 = − ln(1− x) by (3.4). We have cn = 1

n , so

cn+1

cn
=

n

n+ 1
−→ 1.

Thus the series converges if |x| < 1 and diverges if |x| > 1. For x = 1, the series is
∑∞

n=0
1

n+1 , which

is just the harmonic series (diverges!). If x = −1, we have the series
∑∞

n=1
(−1)n+1

n+1 , which converges
by (6.1) (it’s the “alternating harmonic series”).

Thus our series converges precisely for x in the half-open interval [−1, 1).

Definition 7.3. The set of x ∈ R such that P (x) converges is called the interval of convergence
of the power series. This interval has radius R = 1

c = 1

limn→∞
∣∣∣ cn+1

cn

∣∣∣ (i.e., half the length of the

interval).

Remark. We can also use the root test to find the radius of convergence. Namely, R = 1
d =

1
limn→∞ |cn|1/n

(if the limit exists).

Remark. We may also be able to compute the radius (and interval) of convergence if the limits
above do not exist.

Example 7.4. P (x) =
∑∞

n=0 2
nx2n has all odd coefficients equal to zero, so the ratio test cannot

be applied. As limn→∞ |c2n|1/2n =
√
2 6= 0, the root test cannot be applied either.

However, we can write y = x2, and then the series becomes P (x) =
∑∞

n=0 2
nx2n =

∑∞
n=0 2

nyn =∑∞
n=0 any

n, so applying the root test we obtain that the series converges if |y| < 1

limn→∞
∣∣∣an+1

an

∣∣∣ = 1
2

and diverges if |y| > 1/2. Since y = x2, we see that P (x) converges if |x| < 1/
√
2 and diverges if

|x| ≥ 1/
√
2, so the interval of convergence is (−1/

√
2, 1/
√
2).
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Remark. In the case of two-variable analysis (or complex analysis), the convergence will be in a
circular disc instead of an interval. This is where the terminology radius of convergence comes
from.

For example, P (x) =
∑∞

n=1
xn

n! has interval of convergence (−∞,∞) = R and the radius is ∞.
The series P (x) =

∑∞
n=0

1
n+1x

n+1 has interval of convergence [−1, 1) and radius R = 1.

Series with complex numbers

Assume that we have a power series P (z) =
∑∞

n=0 cnz
n, where z ∈ C and cn ∈ C. We can consider

the real series
∑
|cnzn|, which we know converges if

|z| lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ < 1.

Thus,
∑

cnz
n converges aboslutely if |z| < 1

limn→∞
∣∣∣ cn+1

cn

∣∣∣ .
Example 7.5. P (z) =

∑∞
n=0 z

n. We have limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 1, so the series converges absolutely
for |z| < 1 and diverges for |z| > 1. For |z| = 1 it also diverges, because then zn does NOT tend to
0 (for zn to tend to 0 its modulus, which is the distance to the origin, would have to tend to 0).

Note that the set of z ∈ C such that |z| < 1, is a disc (with radius 1), rather than an interval.

Operations with power series

Suppose P (z) and Q(z) are two power series which converge in some disc |z| < R. Then:

• P (z) +Q(z) and aP (z) converge, for any a ∈ C.

• Inside the disc of convergence, we can integrate and differentiate series.

Why can we differentiate series inside the interval/disc of convergence? Well, if P (z) =
∑

cnz
n,

we know that the radius is
R =

1

limn→∞

∣∣∣ cn+1

cn

∣∣∣ .
Now, dP (z)

dz =
∑

ncnz
n−1 and the radius of this series is

1

limn→∞

∣∣∣ (n+1)cn+1

ncn

∣∣∣ = 1

limn→∞

∣∣∣ cn+1

cn

∣∣∣ = R,

so the radius of convergence is the same as before. This means that taking the derivative does not
“destroy” the disc of convergence.

Example 7.6. P (x) =
∑

xn = 1
1−x for |x| < 1. Thus,

dP (x)

dx
= (x− 1)−2 = (1 + x+ x2 + · · · )′ = 1 + 2x+ 3x2 + · · ·

=
∞∑
n=1

nxn−1 =
∞∑
k=0

(k + 1)xk.

This series is called the expansion of (x − 1)−2 = 1
(x−1)2 (at x = 0). In the following, we will now

see what this means in general.
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