Lecture 7

Convergence of power series

We use the ratio test for > 7 |c,2™], that is, we look at absolute convergence:
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We want to know the values of x for which the series converges.

=0, then p = 0 for all x, so it converges.
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= ¢ € R, then p = [z|c, so p < 1 iff |2| < 1. Thus it converges if |z < 2
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and diverges if |z| > % If |x| = < anything can happen, so we need to check convergence

separately.
Example 7.1. P(z) =", %T.L We have ¢, = %7 SO
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Thus the series converges for all z. In fact, it converges to e*.

Example 7.2. P(z) =3 %_Hx”“‘l = —In(1 — z) by (3.4). We have ¢, = %v S0
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Thus the series converges if |z| < 1 and diverges if |z| > 1. For z = 1, the series is ) %H7 which
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is just the harmonic series (diverges!). If z = —1, we have the series > 2 ; , which converges
by (6.1) (it’s the “alternating harmonic series”).

Thus our series converges precisely for z in the half-open interval [—1,1).

Definition 7.3. The set of x € R such that P(z) converges is called the interval of convergence

of the power series. This interval has radius R = % = ﬁ (i.e., half the length of the
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interval).

Remark. We can also use the root test to find the radius of convergence. Namely, R = é =

L (if the limit exists).
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Remark. We may also be able to compute the radius (and interval) of convergence if the limits
above do not exist.

Example 7.4. P(z) = Yo% 2"2?" has all odd coefficients equal to zero, so the ratio test cannot
be applied. As lim, o |02n]1/ 2n — /2 # 0, the root test cannot be applied either.

However, we can write y = 22, and then the series becomes P(z) = Y 0% j2nz?m = 3" 2y =
Yoo any™, so applying the root test we obtain that the series converges if |y| < W = %
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and diverges if |y| > 1/2. Since y = 22, we see that P(z) converges if |z| < 1/1/2 and diverges if
|| > 1/4/2, so the interval of convergence is (—1/v/2,1/v/2).
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Remark. In the case of two-variable analysis (or complex analysis), the convergence will be in a
circular disc instead of an interval. This is where the terminology radius of convergence comes
from.

For example, P(z) =Y 7, %T,L has interval of convergence (—oo,00) = R and the radius is co.
The series P(z) = 7 n%rlwnﬂ has interval of convergence [—1,1) and radius R = 1.

Series with complex numbers

Assume that we have a power series P(z) = Y 7 ¢,2", where z € C and ¢, € C. We can consider
the real series > |¢,2"|, which we know converges if
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Thus, > ¢, 2™ converges aboslutely if |z| < . 1 o ’
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Example 7.5. P(z) = Y 2 2" We have lim,_,« ‘621’ = 1, so the series converges absolutely

for |z| < 1 and diverges for |z| > 1. For |z| = 1 it also diverges, because then 2" does NOT tend to
0 (for 2™ to tend to 0 its modulus, which is the distance to the origin, would have to tend to 0).
Note that the set of z € C such that |z| < 1, is a disc (with radius 1), rather than an interval.

Operations with power series

Suppose P(z) and Q(z) are two power series which converge in some disc |z| < R. Then:

e P(z)+ Q(z) and aP(z) converge, for any a € C.

e Inside the disc of convergence, we can integrate and differentiate series.

Why can we differentiate series inside the interval/disc of convergence? Well, if P(z) = > ¢p2",

we know that the radius is
1
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Now, % =Y nc,z" ! and the radius of this series is
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so the radius of convergence is the same as before. This means that taking the derivative does not
“destroy” the disc of convergence.

Example 7.6. P(z) =Y 2" = & for |z| < 1. Thus,
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This series is called the ezpansion of (z —1)72 = ﬁ (at = 0). In the following, we will now

see what this means in general.
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