Lecture 8

Taylor series

Many (most?) physical phenomena cannot be completely described by polynomial functions (be-
cause these are too simple to do the job, in general). However, if we study the behaviour of functions
in a small region around a point at a time, then we can approximate the function well by polynomi-
als. This has big advantages from a computational point of view, because to compute polynomials
we only need the four standard operations (no square roots, logarithms etc are needed).

Goal: To approximate a function by polynomials which are partial sums of a power series (in some
interval around a point).

Recall that if we have a function y = f(z), we can plot its graph in the x — y-plane. We want to
approximate the graph by something simple. The simplest graph is a line. We can then approximate
the graph of f at a point a by taking the tangent at a. The slope of this tangent line is of course
the derivative f’(x), and the equation for the line is

y = f'(a)(z —a) + f(a).
This is a first approximation of f and it is called the first Taylor polynomial pi(x).
Why is it a “good” approximation? Well, the error is
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So, as we approach the point x = a, the error goes to 0.
We now want to find better approximations, so-called “higher” Taylor polynomials ps(z), ps(x),. ..
such that for each n
f(@) — pnl2)

(x —a)"

Let x be approximately equal to a. We write this x =~ a. We can write

/ " Pyt = fz) — f(a),

—r0asxr — a.

and so -
f)=f@+ [ Fv (©)
Apply the equality above to the function f’ at point ¢t € (a,z) (or (z,a)):
t
£ = @)+ [ feds = ')+ (¢~ a)f ).

Plug this into © :
f@)~ (0 + | (@) + (¢ — a) f(a)) dt
= J(@)+ @) —a)+ 1) [ (- a)at

_ / _ " (x_a>2 —
fla) + f(a)(z —a) + f(a)— p2().

This is our second Taylor polynomial pa(x).
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Definition 8.1. In general, we get the Nth Taylor polynomial:

(z —a)?

p(@) = (@) + /@) ) + (@) T 4 T g
I Mf(f\f)(a)
N!
=3
n=0
(note that 0! = 1).
Example 8.2. f(z) = 2%+ 2z + 1 and a = 0. Then
fla) =1
f(a) =2 pi(e) =1+ 22
72
() =2 pa(a) = 1420+ 2 = f(2)
f@a) =0 p3(x) = pa(z)
-=0 pn(x) = pa(x).

In general, the Nth Taylor polynomials of a polynomial function f(x) of degree n will eventually
(for N > n) be the polynomial f(z) itself.

Here are some other examples of Taylor polynomials:

Example 8.3. Let f(x) = sinz. Compute ps(x), around a = 0.

Values at ¢ =0
f(z) =sinx 0
f'(x) = cosx 1
f"(x) = —sinz 0
O (z) = —cosz -1
f@W(z) =sinz
fO)(z) = cosz 1

Thus ps(z) =0+ 2+ %2 -0+ L (—1) + L1 - 04+ & =2 — & 4 27,

Remark: Instead of a Taylor series “around” a point a, some authors say “centered at a”, “about
a”, or simply “at @”. The point is (no pun intended) that the Taylor expansion is only valid in
sufficiently small neighbourhoods around the point a.

Example 8.4. Let f(x) =Inz. Compute ps(x) around a = 1.

Values at a =1
flx)=Inzx 0
flx)=1 1
o) =% | 1
3 (x) = % 2
fO() =3¢ ~3!
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_1)2 _1)3 14
Thus p4($) =rx—-1—- (x 21) + (33 31) _ (x 41) .
Setting y = x — 1, we get the Taylor polynomial p4(y) for f(y) =In(1 + y) around a = 0:
SRy
2 3 4
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