
Lecture 8

Taylor series

Many (most?) physical phenomena cannot be completely described by polynomial functions (be-
cause these are too simple to do the job, in general). However, if we study the behaviour of functions
in a small region around a point at a time, then we can approximate the function well by polynomi-
als. This has big advantages from a computational point of view, because to compute polynomials
we only need the four standard operations (no square roots, logarithms etc are needed).

Goal: To approximate a function by polynomials which are partial sums of a power series (in some
interval around a point).

Recall that if we have a function y = f(x), we can plot its graph in the x − y-plane. We want to
approximate the graph by something simple. The simplest graph is a line. We can then approximate
the graph of f at a point a by taking the tangent at a. The slope of this tangent line is of course
the derivative f ′(x), and the equation for the line is

y = f ′(a)(x− a) + f(a).

This is a first approximation of f and it is called the first Taylor polynomial p1(x).
Why is it a “good” approximation? Well, the error is

f(x)− p1(x) = f(x)− f(a)− f ′(a)(x− a) = (x− a)

(
f(x)− f(a)

x− a
− f ′(a)

)

︸ ︷︷ ︸

→0 as x→a

.

So, as we approach the point x = a, the error goes to 0.
We now want to find better approximations, so-called “higher” Taylor polynomials p2(x), p3(x), . . .

such that for each n
f(x)− pn(x)

(x− a)n
−→ 0 as x −→ a.

Let x be approximately equal to a. We write this x ≈ a. We can write
ˆ

x

a

f ′(t)dt = f(x)− f(a),

and so

f(x) = f(a) +

ˆ

x

a

f ′(t)dt. (,)

Apply the equality above to the function f ′ at point t ∈ (a, x) (or (x, a)):

f ′(t) = f ′(a) +

ˆ

t

a

f ′′(s)ds ≈ f ′(a) + (t− a)f ′′(a).

Plug this into , :

f(x) ≈ f(a) +

ˆ

x

a

(
f ′(a) + (t− a)f ′′(a)

)
dt

= f(a) + f ′(a)(x− a) + f ′′(a)

ˆ

x

a

(t− a)dt

= f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
= p2(x).

This is our second Taylor polynomial p2(x).
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Definition 8.1. In general, we get the Nth Taylor polynomial :

pN (x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
+

(x− a)3

3!
f (3)(a)

+ · · ·+
(x− a)N

N !
f (N)(a)

=
N∑

n=0

(x− a)n

n!
f (n)(a).

(note that 0! = 1).

Example 8.2. f(x) = x2 + 2x+ 1 and a = 0. Then

f(a) = 1

f ′(a) = 2 p1(x) = 1 + 2x

f ′′(a) = 2 p2(x) = 1 + 2x+
2x2

2
= f(x)

f (3)(a) = 0 p3(x) = p2(x)

· · · = 0 · · ·

· · · = 0 pN (x) = p2(x).

In general, the Nth Taylor polynomials of a polynomial function f(x) of degree n will eventually
(for N ≥ n) be the polynomial f(x) itself.

Here are some other examples of Taylor polynomials:

Example 8.3. Let f(x) = sinx. Compute p5(x), around a = 0.

Values at a = 0

f(x) = sinx 0
f ′(x) = cosx 1

f ′′(x) = − sinx 0

f (3)(x) = − cosx −1

f (4)(x) = sinx 0

f (5)(x) = cosx 1.

Thus p5(x) = 0 + x+ x
2

2 · 0 + x
3

3! (−1) + x
4

4! · 0 +
x
5

5! = x−
x
3

3! +
x
5

5! .

Remark: Instead of a Taylor series “around” a point a, some authors say “centered at a”, “about
a”, or simply “at a”. The point is (no pun intended) that the Taylor expansion is only valid in
sufficiently small neighbourhoods around the point a.

Example 8.4. Let f(x) = lnx. Compute p4(x) around a = 1.

Values at a = 1

f(x) = lnx 0
f ′(x) = 1

x
1

f ′′(x) = −
1
x2 −1

f (3)(x) = 2
x3 2

f (4)(x) = −3!
x4 −3!
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Thus p4(x) = x− 1− (x−1)2

2 + (x−1)3

3 −

(x−1)4

4 .

Setting y = x− 1, we get the Taylor polynomial p4(y) for f(y) = ln(1 + y) around a = 0:

y −
y2

2
+

y3

3
−

y4

4
.
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