
Single Maths A – Epiphany 2018

Pavel Tumarkin (room CM110)
Email: pavel.tumarkin@durham.ac.uk

All the times and room numbers are the same as last term.
Homeworks will be set on Fridays, during the lecture. Hand in your homeworks in the lockers in

CM117. The deadline is strictly 5pm, before the start of the lecture the following week. Tutorials
start in week 12.

All the course material will be made available on DUO and on the class page
http://www.maths.dur.ac.uk/users/pavel.tumarkin/SMA.

WARNING! The lectures will approximately correspond to the notes below. However things may
change and there will be more material at the end hopefully. The content of the course is defined
by the actual lectures, not by the following notes!

Short outline of this term’s content

• Series, Taylor series

• Matrices, systems of linear equations

• Vector spaces, linear maps, eigenvalues, eigenvectors

• Groups

Textbook: Same as last term (Riley et al).
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Series

Here is a problem about series which is part of a popular story1:

Two trains are 20 miles apart on the same track heading towards each other at 10
mi/h, on a collision course. At the same time, a fly takes off from the nose of one train
at 20 mi/h, towards the other train. As soon as the fly reaches the other train, it turns
around and heads off at 20 mi/h back towards the first train. It continues to do this
until the trains collide.
Question: How far does the fly fly before the collision?

There is a relatively easy solution: The trains will collide after exactly 1 hour (since they will each
have gone 10 miles by then). Since the speed of the fly is 20 mi/h, it will have flown 20 miles by
the time the trains collide. (This is sometimes described as the physicists solution).

Another solution goes as follows: The fly is twice as fast as the trains, so on the first leg of its
flight, it will cover x1 miles, while the train going in the opposite direction will have covered x1/2
miles. The total, x1 + x1

2 must equal the initial distance: 20 miles. Thus

3x1/2 = 20 =⇒ x1 =
2

3
20.

For the second leg of the flight, the new distance between the trains is 20− 2x12 = 20− 2
320 = 1

320
miles, so by the same argument the fly will cover

x2 =
2

3
(
1

3
20) miles.

Similarly, the distance of the third leg is

x3 =
2

3
(
1

3
20− 2

x2
2

) =
2

3

1

3
(
1

3
20).

In general, the nth distance the fly covers is

xn =
2

3
20(

1

3
)n−1.

Continuing this way infinitely many steps, and summing all the distances, we get the total distance
the fly covers:

x1 + x2 + · · · = 2

3
20 +

2

3
20

1

3
+

2

3
20(

1

3
)2 + · · ·

=
2

3
20

(
1 +

1

3
+

(
1

3

)2

+

(
1

3

)3

+ · · ·

)
.

We now need to evaluate the infinite series in the brackets. Let

x = 1 +
1

3
+

(
1

3

)2

+

(
1

3

)3

+ · · · .

1The story involves the mathematician John von Neumann. It is not examinable.
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Then

3(x− 1) = 1 +
1

3
+

(
1

3

)2

+ · · · = x.

Solving for x, we get x = 3/2, so the solution to the original problem is 2
320 · x = 20 miles, which

luckily agrees with the first solution!
It is said that physicists instictively solve this problem in the first way, while mathematicians

try to solve it using an infinite series. This may just be a myth, but it begs the question: Why do
we even consider the more complicated solution? The answer is that many problems will not have
an easy solution, so that the techniques of infinite series has to be used, and there is no alternative.
That’s why we study them.

Terminology

An individual piece of a series is called a term, often denoted by a subscript. For example, in the
series

x1 + x2 + · · · ,

each xi is a term, for i = 1, 2, . . . .
There are finite series

x1 + x2 + · · ·+ xN =
N∑
i=1

xi,

and infinite series (with infinitely many terms)

x1 + x2 + · · · =
∞∑
i=1

xi.

Example 2.1. In the fly problem, we had the infinite series

1 +
1

3
+

(
1

3

)2

+ · · · =
∞∑
i=0

(
1

3

)i
(note that i starts from 0). The sum of this series is its value, which we computed to be 3/2.

If we write this series as
∑∞

i=1 xi, with xi =
(
1
3

)i, then we have a recurrence relation xi+1 = 1
3xi,

for each i ≥ 0. A recurrence relation is a rule for computing a term from some of the previous
terms.

Our goals are:

• To understand how to compute finite series
∑N

i=1 xi.

• To define and investigate infinite series. Does the sum exist? If so, how do we compute it?
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Series basics

Definition 2.2. Let s =
∑∞

i=1 ai be an infinite series. A partial sum is

a1 + a2 + · · ·+ aN =
N∑
i=1

ai = sN .

In this way, we get a sequence of partials sums: s1, s2, . . . . A series can also start at i = 0 or any
other integer, even negative ones.

The series s =
∑∞

i=1 ai converges if the sequence s1, s2 has a limit, that is if limN→∞ sn exists.
This limit is then denoted by s, and it is the sum of the series. If the series does not converge, it is
said to diverge.

Example 2.3.

• 1 + 0 + 0 + 0 + · · · converges. The sequence of partial sums s1, s2, . . . is 1, 1, 1, . . . whose limit
is just 1.

• 1 + 1 + 1 + · · · diverges. The sequence of partial sums s1, s2, . . . is 1, 2, 3, . . . , which does not
have a limit.

Example 2.4. Arithmetic series (finite). This is where the difference between two consecutive
terms is constant (e.g., 0 + 2 + 4 + 6 + · · · has constant difference 2). Therefore, we can write an
arithmetic series as

(a+ d) + (a+ 2d) + · · ·+ (a+Nd) = sN =

N∑
i=1

ai, where ai = a+ id.

where d is the difference. How do we compute these? Write the series once and once in reverse
order:

sN = (a+ d) + (a+ 2d) + · · ·+ (a+Nd)

sN = (a+Nd) + (a+ (N − 1)d) + · · ·+ (a+ d).

The sum of two terms lying above each other is always 2a+ (N + 1)d, so

2sN = (a+ d) + (a+Nd) + · · ·+ (a+Nd) + (a+ d)︸ ︷︷ ︸
N pairs of terms

= N(2a+ (N + 1)d).

Thus sN = N
2 (2a+ (N + 1)d). If a = 0 and d = 1, we get

1 + 2 + · · ·+N =
N(N + 1)

2
.
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Example 2.5. Geometric series. Here the quotient of two consecutive terms is constant (e.g.,
1 + 1

2 + 1
4 + · · · with constant quotient 1/2). They look like

sN =

N∑
i=0

ari = a+ ar + ar2 + · · ·+ arN

and we will always assume that r 6= 1 (if r = 1 it is an arithmetic series with difference 0). How do
we compute these? If we multiply the series by r and add a we get

rsN + a = a+ r(a+ ar + · · ·+ arN ) = a+ ar + ar2 + · · ·+ arN+1 = sN + arN+1.

Solving for sN , we get

sN = a
rN+1 − 1

r − 1
.

If instead we consider the infinite series
∞∑
i=0

ari,

then have just seen that the partial sums are sN as above. Now,

lim
N→∞

sN = lim
N→∞

a
rN+1 − 1

r − 1
= a

1

1− r
+ lim
N→∞

a
rN+1

r − 1
=

{
0 if a = 0,

a 1
1−r if |r| < 1.

This is because if |r| < 1, then

lim
N→∞

a
rN+1

r − 1
=

a

r − 1
lim
N→∞

rN+1 = 0.

If |r| ≥ 1, a 6= 0, then there is no limit. In particular, we have

1 + r + r2 + · · · = 1

1− r

whenever |r| < 1. We will use this important identity later.
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Lecture 3

The difference method

This is a method which is sometimes useful to calculate finite or infinite series.

Example 3.1. Consider the series
∑∞

n=1
1

n(n+1) . Then the partial sums are sN = 1
1·2 + 1

2·3 + · · ·+
1

N(N+1) . Observe that
1

n
− 1

n+ 1
=

1

n(n+ 1)
.

(partial fraction decomposition). Using this, we can write

sN =
1

1
−1

2
+

1

2︸ ︷︷ ︸
=0

−1

3
+ · · ·+ 1

N − 1
− 1

N
+

1

N︸ ︷︷ ︸
=0

− 1

N + 1
= 1− 1

N + 1
=

N

N + 1
.

In particular, letting N →∞, we get the sum of the infinite series:
∑∞

n=1
1

n(n+1) = 1.

Whenever we have a series
∑∞

n=1 an where we can write

an = f(n)− f(n+ 1)

for some function f (in the above, we had f(n) = 1
n), then

sN = f(1)− f(N + 1)

and we can compute the sum of the infinite series as limN→∞ f(1) − f(N + 1) which is equal to
f(1)− limN→∞ f(N + 1). This is called the difference method of computing the sum.

Here is an extension of the method when we jump more than one step each time:

Example 3.2. Let s =
∑∞

n=1
1

n(n+3) . We can write

1

n(n+ 3)
=

1

3
(
1

n
− 1

n+ 3
) = f(n)− f(n+ 3),

where f(n) = 1
3n . Thus

sN = f(1)− f(4) + f(2)− f(5) + f(3)− f(6) + f(4)− f(7) + · · ·+
+ f(N − 2)− f(N + 1) + f(N − 1)− f(N + 2) + f(N)− f(N + 3)

= f(1) + f(2) + f(3)− f(N + 1)− f(N + 2)− f(N + 3).

Letting N →∞, we is we get

s = lim
N→∞

sN = f(1) + f(2) + f(3) =
1

3
+

1

6
+

1

9
=

11

18
,

since f(N)→ 0 as N →∞ (so f(N + 1) etc vanish in the limit).

Here is another example using the difference method:

6



Example 3.3. Compute sN =
∑N

n=1 n
3. We need to find a function f such that n3 = f(n)−f(n+1).

First, note that if f(n) = (n(n− 1))2, then

f(n)− f(n+ 1) = −4n3,

which isn’t quite right. But if we modify this to cancel the −4 factor and take g(n) = −1
4(n(n−1))2,

we do get
g(n)− g(n+ 1) = n3.

Then the difference method now says that sN = g(1)−g(N+1) = −1
4(0−(N(N+1))2) = (N(N+1))2

4 .

Manipulating series

In order to simplify series and to be able to sum them it is sometimes useful to transform a series
into another one, for example by differentiating or integrating it. In order to manipulate infinite
series, we always need to ensure that the series converge.

Example 3.4. Let s(x) =
∑∞

n=0
xn+1

n+1 = x+ x2

2 + · · · . Differentiating, we get

ds

dx
=
∞∑
n=0

(
xn+1

n+ 1

)′
=
∞∑
n=0

xn =
1

1− x
if |x| < 1 by (2.5).

Integrating, we get s(x) =
´

1
1−xdx = − ln(1 − x) + c. To determine the constant c, note that

s(0) = 0, so we must have c = 0 and

s(x) = − ln(1− x) for |x| < 1.

Warning: Here is an example of how things can go wrong if the series does not converge. Let

s =

∞∑
n=0

2n = 1 + 2 + 4 + · · · .

If we multiply both sides by 2, we get

2s = 2 + 4 + 8 + · · · = s− 1 =⇒ s = −1,

which is clearly nonsense since we are summing positive numbers. Moral of the story: Do not
manipulate diverging series. It is therefore important to know when a series converges, and this is
what we will look at now.
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Lecture 4

Convergence, necessary conditions, tests

Proposition 3.5 (Necessary condition for convergence). If
∑∞

n=1 an converges, then an → 0 as
n→∞.

In other words, if an does not go to zero, then the series diverges. This immediately tells us
that the series 2 + 4 + 8 + · · · diverges, and similarly

∑∞
n=0(−1)n = 1 − 1 + 1 − 1 + · · · diverges.

However, the converse of this proposition is not true as the following example shows.

Example 4.1. (The harmonic series). The series
∑∞

n=1
1
n is called the harmonic series. We will

show that it diverges. Some of the first partial sums are

s1 = 1, s2 = 1 +
1

2
=

3

2
, s4 = s2 +

1

3
+

1

4
>

3

2
+

1

4
+

1

4
= 2.

We can therefore guess that we always have

s2n ≥
n

2
+ 1.

We now prove this by induction. Assume it is true for some n ≥ 1. Now

s2n+1 = s2n +
1

2n + 1
+

1

2n + 2
+ · · ·+ 1

2n + 2n

> s2n +
1

2n + 2n
+

1

2n + 2n
+ · · ·+ 1

2n + 2n

= s2n +
2n

2n+1
≥ n

2
+ 1 +

1

2
(by the induction hypothesis)

=
n+ 1

2
+ 1.

This shows that s2n ≥ n
2 + 1, for all n ≥ 1, and thus the partial sums tend to ∞ as n→ 0.

Assume now that all the terms in the series are ≥ 0. We have the following convergence tests:

Comparison test

Assume that S =
∑∞

n=0 bn converges and an ≤ bn for all n large enough. Then s =
∑∞

n=0 an
converges. Reason: sN ≤ SN for each N .

Equivalently, if s =
∑∞

n=0 an diverges, and an ≤ bn, then S =
∑∞

n=0 bn diverges.

Example 4.2. Let s =
∑∞

n=0
2n+3n

4n . Then

an =
2n + 3n

4n
≤ 3n + 3n

4n
= 2

(
3

4

)n
= bn.

But
∑∞

n=0 bn = 2
∑

n

(
3
4

)n
= 2

1−3/4 (geometric series with |x| < 1, see (2.5)).
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Quotient test

Let s =
∑∞

n=0 an and S =
∑∞

n=0 bn as before. Compute p = limn→∞
an
bn
. Then:

• if p = 0 and S converges, then s converges.

• if p =∞ and s converges, then S converges.

• If 0 < p <∞, then s converges if and only if S does.

• If p doesn’t exist (i.e., anbn does not have a limit), then we can’t say anything.

Example 4.3. Let s =
∑∞

n=1
1
n2 =

∑
n an and S =

∑∞
n=1

1
n(n+1) =

∑
n bn. Now

p = lim
an
bn

= lim
1/n2

1
n(n+1)

= lim
n+ 1

n
= 1.

Thus, by the quotient test, s converges if and only if S does. But we know that S converges by
(3.1), so we conclude that s also converges.

We can also use the comparison test to show that s converges: We have

s =

∞∑
n=1

1

n2
= s =

∞∑
n=0

1

(n+ 1)2
= 1 +

∞∑
n=1

1

(n+ 1)2
≤ 1 +

∞∑
n=0

1

n(n+ 1)
,

where we know that the last series converges, by (3.1). Thus the comparison test implies convergence
also for s.

Moreover,
∑∞

n=1
1
nk

converges for any k ≥ 2 because lim 1/nk

1/n2 = lim 1
nk−2 = 0, for any k > 2.

As we saw in the above example, it is often possible to use several different tests to show convergence
(but sometimes only one test works; it depends on the series).

9



Lecture 5

Ratio test

Let s =
∑∞

n=0 an and p = limn→∞
an+1

an
, if the limit exists. Then

• if p < 1, then s converges.

• if p > 1, then s diverges.

• if p = 1, then anything can happen (s may converge, may diverge).

Example 5.1. Let s =
∑∞

n=0
n2

2n =
∑
an. Then

an+1

an
=

(n+ 1)2/2n+1

n2/2n
=

1

2

(n+ 1)2

n2
=

1

2
(1 +

1

n
)2 → 1

2
as n→∞.

Since 1
2 < 1, we conclude that s converges.

Cauchy’s root test

Let s =
∑∞

n=0 an and p = limn→∞ n
√
an, if the limit exists. Then

• if p < 1, then s converges.

• if p > 1, then s diverges.

• if p = 1 anything can happen.

Example 5.2. Does s =
∑∞

n=1
2n
3n converge or diverge? The nth root of the nth term is(

2n

3n

)1/n

=
(2n)1/n

3
,

so we need to compute the limit of (2n)1/n

3 as n → ∞. Taking the logarithm of the numerator, we
have

ln((2n)1/n) =
ln(2n)

n
,

and by l’Hôpital’s rule,

lim
n→∞

ln(2n)

n
= lim

n→∞

2/2n

1
= 0.

Exponentiating both sides, we get lim((2n)1/n) = e0 = 1, so

lim
(2n)1/n

3
=

1

3
< 1.

Thus, by the root test, s converges.
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Integral test

Suppose we can find a decreasing function f : R+ → R+ such that f(n) = an. Then
∑∞

n=1 an
converges if and only if

lim
N→∞

ˆ N

1
f(x)dx exists.

The idea here is that the integral is a good approximation of the series, so one converges iff the
other does.

Example 5.3. Let s =
∑∞

n=1
1
nq , q > 0. Then we can take f(x) = 1

xq , which is decreasing. We
have, if q 6= 1: ˆ N

1
f(x)dx =

[
1

−q + 1
x−q+1

]N
1

=
1

1− q
(N−q+1 − 1).

Thus:

• If q > 1, we get limN→∞
1

Nq−1 = 0, so lim
´ N
1 f(x)dx = 1

q−1 , hence the series s converges.

• If q < 1, then limN→∞
1

Nq−1 =∞, so the integral has no limit, hence the series s diverges.

If q = 1, we have f(x) = 1
x , so

´ N
1 f(x)dx = [lnx]N1 = lnN → ∞ as N → ∞, so the series s

diverges. To summarise, s converges if and only if q > 1.

Further examples

Here is a collection of further examples of convergence of infinite series, using the above methods.

i)
∑∞

n=1
2n

n! . Ratio test: We have an = 2n

n! so an+1

an
= 2

n+1 → 0 as n → ∞. Thus the series
converges. Note: The same thing works with 2 replaced by any other real number, so the
series

∑∞
n=1

an

n! converges for any a ∈ R.

ii)
∑∞

n=1
1

2(n!)+1 . Quotient test (with the previous one): We have bn = 2n

n! and an = 1
2(n!)+1 , so

an
bn

=
n!

2n · (2(n!) + 1)
=

n!

2(n!) + 1

1

2n
<

1

2n
→ 0 as n→∞.

Thus the series converges. Notice that as this limit is 0 and thus less than 1, the comparison
test would likewise imply converge in this case.
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Lecture 6

iii)
∑∞

n=1 r
n · lnn, where r < 1. Cauchy’s root test: n

√
rn · lnn = r · n

√
lnn. Now note that for

n ≥ 1, we have lnn ≤ n (for n = 1 we have ln 1 = 0 < 1; now take derivative of n − lnn to
show that the function grows). Thus

1 ≤ n
√

lnn ≤ n
√
n,

and since n
√
n, n = 1, 2, 3, . . . is a decreasing sequence (compute its derivative!), the sand-

wiched expression n
√

lnn tends to 1 as n→∞.
Therefore, r · n

√
lnn→ r as n→∞, and since r < 1 the series converges.

Series with negative terms

A series
∑
an is called alternating if an = (−1)n|an| or an = (−1)n+1|an|, that is, if the sign

alternates every other step, for example

1− 1

2
+

1

3
− 1

4
+ · · ·

Leibniz test for alternating series

If s =
∑∞

n=1 an is an alternating series such that an → 0 and |an+1| < |an|, for all n (i.e., the
sequence (an) is decreasing), then s converges.

Example 6.1. The “alternating harmonic series”
∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+ · · ·

converges (unlike the harmonic series itself), because |(−1)n+1 1
n | =

1
n → 0 as n→∞, and 1

n+1 <
1
n .

Some terminology (for arbitrary series of real or complex numbers)

Definition 6.2.
∑
an converges absolutely if

∑
|an| converges.

∑
an converges conditionally if∑

|an| diverges but
∑
an converges.

Example 6.3.

• The “alternating harmonic series” above converges conditionally because it converges even
though the harmonic series diverges.

•
∑ (−1)n+1

n2 converges absolutely, because
∑ 1

n2 converges; see (4.3).

Fact. An absolutely convergent series
∑
an converges.

Fact. If a series is absolutely convergent, we can rearrange the terms in the sum in any way we
want, and the series will still converge to the same value.
In conditionally convergent series the order of the terms matters! Moreover, for any q ∈ R or
q = ±∞ it is possible to rearrange the terms of a conditionally convergent series such that it will
converge to q.
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Power series

Let (cn), n = 0, 1, 2, . . . be a sequence of numbers. A series of the form

P (x) = c0 + c1x+ c2x
2 + · · · =

∞∑
n=0

cnx
n

is called a power series (the cn are called its coefficients).

Example 6.4. If cn = a is a constant, then P (x) =
∑∞

n=0 ax
n = a+ ax+ ax2 + · · · is a geometric

series. Recall that this converges if |x| < 1. For every x ∈ R such that |x| < 1, we have a series, so
we get a function

P : (−1, 1) −→ R, P (x) =
∞∑
n=0

cnx
n.

The partial sums sN =
∑N

n=0 cnx
n approximate the limit s =

∑∞
n=0 cnx

n, so the function P (which
is not in general a polynomial) can be approximated by polynomials, as long as x ∈ (−1, 1), that
is, locally in a neighbourhood of 0.

The above example is fundamental in mathematics. The fact that we can approximate many
(complicated) functions by polynomials locally around a point is the basis for much of analysis and
numerical computations in science.

Example 6.5. Recall from (3.4) that for x such that |x| < 1 we have

∞∑
n=1

xn

n
= − ln(1− x).

So, − ln(1− x) = x+ x2

2 + x3

3 + · · · = P (x) and the partial sums are

PN (x) = x+ · · ·+ xN

N
.

Now, P (x)− PN (x) = xN+1

N+1 + xN+2

N+2 + · · · , so

P (x)− PN (x)

xN+1

=
1

N + 1
+

x

N + 2
+ · · · −→ 1

N + 1
as x −→ 0.

Thus, as x→ 0, the ratio P (x)−PN (x)
xN+1

is close to 1
N+1 , and therefore

P (x)− PN (x) is approximated by
xN+1

N + 1
.

We write this

P (x)− PN (x) ∼ xN+1

N + 1
.

The difference P (x)− PN (x) should be thought of as the error when we approximate the function
P (x) by the partial sum PN (x). Clearly, increasing N , we can make this error as small as we want.
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Lecture 7

Convergence of power series

We use the ratio test for
∑∞

n=0 |cnxn|, that is, we look at absolute convergence:

p = lim
n→∞

∣∣∣∣cn+1x
n+1

cnxn

∣∣∣∣ = lim
n→∞

|x| ·
∣∣∣∣cn+1

cn

∣∣∣∣ .
We want to know the values of x for which the series converges.

• If limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 0, then p = 0 for all x, so it converges.

• If limn→∞

∣∣∣ cn+1

cn

∣∣∣ = c ∈ R, then p = |x|c, so p < 1 iff |x| < 1
c . Thus it converges if |x| < 1

c

and diverges if |x| > 1
c . If |x| = 1

c anything can happen, so we need to check convergence
separately.

Example 7.1. P (x) =
∑∞

n=1
xn

n! . We have cn = 1
n! , so

cn+1

cn
=

1

n+ 1
−→ 0.

Thus the series converges for all x. In fact, it converges to ex.

Example 7.2. P (x) =
∑∞

n=0
1

n+1x
n+1 = − ln(1− x) by (3.4). We have cn = 1

n , so

cn+1

cn
=

n

n+ 1
−→ 1.

Thus the series converges if |x| < 1 and diverges if |x| > 1. For x = 1, the series is
∑∞

n=0
1

n+1 , which

is just the harmonic series (diverges!). If x = −1, we have the series
∑∞

n=1
(−1)n+1

n+1 , which converges
by (6.1) (it’s the “alternating harmonic series”).

Thus our series converges precisely for x in the half-open interval [−1, 1).

Definition 7.3. The set of x ∈ R such that P (x) converges is called the interval of convergence
of the power series. This interval has radius R = 1

c = 1

limn→∞
∣∣∣ cn+1
cn

∣∣∣ (i.e., half the length of the

interval).

Remark. We can also use the root test to find the radius of convergence. Namely, R = 1
d =

1
limn→∞ |cn|1/n

(if the limit exists).

Remark. We may also be able to compute the radius (and interval) of convergence if the limits
above do not exist.

Example 7.4. P (x) =
∑∞

n=0 2nx2n has all odd coefficients equal to zero, so the ratio test cannot
be applied. As limn→∞ |c2n|1/2n =

√
2 6= 0, the root test cannot be applied either.

However, we can write y = x2, and then the series becomes P (x) =
∑∞

n=0 2nx2n =
∑∞

n=0 2nyn =∑∞
n=0 any

n, so applying the root test we obtain that the series converges if |y| < 1

limn→∞
∣∣∣an+1
an

∣∣∣ = 1
2

and diverges if |y| > 1/2. Since y = x2, we see that P (x) converges if |x| < 1/
√

2 and diverges if
|x| ≥ 1/

√
2, so the interval of convergence is (−1/

√
2, 1/
√

2).
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Remark. In the case of two-variable analysis (or complex analysis), the convergence will be in a
circular disc instead of an interval. This is where the terminology radius of convergence comes
from.

For example, P (x) =
∑∞

n=1
xn

n! has interval of convergence (−∞,∞) = R and the radius is ∞.
The series P (x) =

∑∞
n=0

1
n+1x

n+1 has interval of convergence [−1, 1) and radius R = 1.

Series with complex numbers

Assume that we have a power series P (z) =
∑∞

n=0 cnz
n, where z ∈ C and cn ∈ C. We can consider

the real series
∑
|cnzn|, which we know converges if

|z| lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ < 1.

Thus,
∑
cnz

n converges aboslutely if |z| < 1

limn→∞
∣∣∣ cn+1
cn

∣∣∣ .
Example 7.5. P (z) =

∑∞
n=0 z

n. We have limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 1, so the series converges absolutely
for |z| < 1 and diverges for |z| > 1. For |z| = 1 it also diverges, because then zn does NOT tend to
0 (for zn to tend to 0 its modulus, which is the distance to the origin, would have to tend to 0).

Note that the set of z ∈ C such that |z| < 1, is a disc (with radius 1), rather than an interval.

Operations with power series

Suppose P (z) and Q(z) are two power series which converge in some disc |z| < R. Then:

• P (z) +Q(z) and aP (z) converge, for any a ∈ C.

• Inside the disc of convergence, we can integrate and differentiate series.

Why can we differentiate series inside the interval/disc of convergence? Well, if P (z) =
∑
cnz

n,
we know that the radius is

R =
1

limn→∞

∣∣∣ cn+1

cn

∣∣∣ .
Now, dP (z)

dz =
∑
ncnz

n−1 and the radius of this series is

1

limn→∞

∣∣∣ (n+1)cn+1

ncn

∣∣∣ =
1

limn→∞

∣∣∣ cn+1

cn

∣∣∣ = R,

so the radius of convergence is the same as before. This means that taking the derivative does not
“destroy” the disc of convergence.

Example 7.6. P (x) =
∑
xn = 1

1−x for |x| < 1. Thus,

dP (x)

dx
= (x− 1)−2 = (1 + x+ x2 + · · · )′ = 1 + 2x+ 3x2 + · · ·

=
∞∑
n=1

nxn−1 =
∞∑
k=0

(k + 1)xk.

This series is called the expansion of (x − 1)−2 = 1
(x−1)2 (at x = 0). In the following, we will now

see what this means in general.
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Lecture 8

Taylor series

Many (most?) physical phenomena cannot be completely described by polynomial functions (be-
cause these are too simple to do the job, in general). However, if we study the behaviour of functions
in a small region around a point at a time, then we can approximate the function well by polynomi-
als. This has big advantages from a computational point of view, because to compute polynomials
we only need the four standard operations (no square roots, logarithms etc are needed).

Goal: To approximate a function by polynomials which are partial sums of a power series (in some
interval around a point).

Recall that if we have a function y = f(x), we can plot its graph in the x − y-plane. We want to
approximate the graph by something simple. The simplest graph is a line. We can then approximate
the graph of f at a point a by taking the tangent at a. The slope of this tangent line is of course
the derivative f ′(x), and the equation for the line is

y = f ′(a)(x− a) + f(a).

This is a first approximation of f and it is called the first Taylor polynomial p1(x).
Why is it a “good” approximation? Well, the error is

f(x)− p1(x) = f(x)− f(a)− f ′(a)(x− a) = (x− a)

(
f(x)− f(a)

x− a
− f ′(a)

)
︸ ︷︷ ︸

→0 as x→a

.

So, as we approach the point x = a, the error goes to 0.
We now want to find better approximations, so-called “higher” Taylor polynomials p2(x), p3(x), . . .

such that for each n
f(x)− pn(x)

(x− a)n
−→ 0 as x −→ a.

Let x be approximately equal to a. We write this x ≈ a. We can writeˆ x

a
f ′(t)dt = f(x)− f(a),

and so
f(x) = f(a) +

ˆ x

a
f ′(t)dt. (,)

Apply the equality above to the function f ′ at point t ∈ (a, x) (or (x, a)):

f ′(t) = f ′(a) +

ˆ t

a
f ′′(s)ds ≈ f ′(a) + (t− a)f ′′(a).

Plug this into , :

f(x) ≈ f(a) +

ˆ x

a

(
f ′(a) + (t− a)f ′′(a)

)
dt

= f(a) + f ′(a)(x− a) + f ′′(a)

ˆ x

a
(t− a)dt

= f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
= p2(x).

This is our second Taylor polynomial p2(x).

16



Definition 8.1. In general, we get the Nth Taylor polynomial :

pN (x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
+

(x− a)3

3!
f (3)(a)

+ · · ·+ (x− a)N

N !
f (N)(a)

=
N∑
n=0

(x− a)n

n!
f (n)(a).

(note that 0! = 1).

Example 8.2. f(x) = x2 + 2x+ 1 and a = 0. Then

f(a) = 1

f ′(a) = 2 p1(x) = 1 + 2x

f ′′(a) = 2 p2(x) = 1 + 2x+
2x2

2
= f(x)

f (3)(a) = 0 p3(x) = p2(x)

· · · = 0 · · ·
· · · = 0 pN (x) = p2(x).

In general, the Nth Taylor polynomials of a polynomial function f(x) of degree n will eventually
(for N ≥ n) be the polynomial f(x) itself.

Here are some other examples of Taylor polynomials:

Example 8.3. Let f(x) = sinx. Compute p5(x), around a = 0.

Values at a = 0

f(x) = sinx 0
f ′(x) = cosx 1
f ′′(x) = − sinx 0

f (3)(x) = − cosx −1

f (4)(x) = sinx 0

f (5)(x) = cosx 1.

Thus p5(x) = 0 + x+ x2

2 · 0 + x3

3! (−1) + x4

4! · 0 + x5

5! = x− x3

3! + x5

5! .

Remark: Instead of a Taylor series “around” a point a, some authors say “centered at a”, “about
a”, or simply “at a”. The point is (no pun intended) that the Taylor expansion is only valid in
sufficiently small neighbourhoods around the point a.

Example 8.4. Let f(x) = lnx. Compute p4(x) around a = 1.

Values at a = 1

f(x) = lnx 0
f ′(x) = 1

x 1
f ′′(x) = − 1

x2
−1

f (3)(x) = 2
x3

2

f (4)(x) = −3!
x4

−3!

17



Thus p4(x) = x− 1− (x−1)2
2 + (x−1)3

3 − (x−1)4
4 .

Setting y = x− 1, we get the Taylor polynomial p4(y) for f(y) = ln(1 + y) around a = 0:

y − y2

2
+
y3

3
− y4

4
.

18



Lecture 9

Definition 9.1. The Taylor series of f(x) around a is a power series

∞∑
n=0

f (n)(a)
(x− a)n

n!
.

Each partial sum is a Taylor polynomial. (For a = 0 this is also called a Maclaurin series.)

Note that the Taylor series is defined only if f(x) is infinitely differentiable at x = a (i.e., if
f (n)(a) exists for all n ≥ 1). If the Taylor series converges, it will equal the value of f(x) for x close
to a. Further away from a it may not approximate f(x) well. For some nice functions, the Taylor
series equals f(x) everywhere:

Example 9.2. The Taylor series of ex and sinx around a = 0 are

ex =
∞∑
n=0

xn

n!
, sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Note that these converge absolutely for all x ∈ R.

By contrast, the Taylor series for ln(1 + x) does not converge everywhere:

Example 9.3. In (8.4) we see a recurring pattern in the partial sums, so

ln(1 + y) =
∞∑
n=1

(−1)n+1

n
yn

(we could use x instead of y here). For convergence,∣∣∣∣∣∣
(−1)n+2

(n+1) y
n+1

(−1)n+1

n yn

∣∣∣∣∣∣ = |y| · n

(n+ 1)
−→ |y|,

so it converges if |y| < 1. For |y| > 1 it diverges and is therefore not a good approximation.

Conclusion. A Taylor series (or any power series) converges absolutely in a disc/interval about its
expansion point a, and diverges outside of it.

Theorem 9.4 (Taylor’s theorem). Suppose f is N + 1 times differentiable in a neighborhood of a,
x belongs to this neighborhood, and f (N+1) is continuous between a and x. Then

f(x) = pN (x) +
f (N+1)(t)

(N + 1)!
(x− a)N+1︸ ︷︷ ︸

=RN (x)

,

for some t such that a < t < x (or x < t < a). Here pN (x) is the N th Taylor polynomial and RN (x)
is the remainder/error in Lagrange form.

By Taylor’s theorem, we can bound the error when f(x) is approximated by pN (x):
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Example 9.5. Compute cos(0.2) with error less than 10−4. Plan: Let f(x) = cosx and pN (x) be
the Taylor polynomial around a = 0. Find N such that

| cos(x)− pN (x)| < 10−4,

and then compute pN (0.2).
The error term in Lagrange form is

RN (x) =
f (N+1)(t)

(N + 1)!
xN+1.

The derivatives f (n)(x) of f(x) = cosx are all either ± sinx or ± cosx. Thus, |f (N+1)(t)| ≤ 1, and
so

|RN (x)| ≤ |x|N+1

(N + 1)!
.

This implies (by Taylor’s theorem) that

| cosx− pN (x)| ≤ |x|N+1

(N + 1)!

and hence, setting x = 0.2,

| cos(0.2)− pN (0.2)| ≤ |0.2|
N+1

(N + 1)!
.

Now find N such that |0.2|
N+1

(N+1)! ≤ 10−4. Try N = 3:

(2 · 10−1)3+1

(3 + 1)!
= 16 · 10−4/24 < 10−4,

so this will work! We just need to evaluate p3(0.2):

p3(x) = 1 + x(− sin 0) +
x2

2
(− cos 0) +

x3

3!
(sin 0) = 1− x2

2
,

so
p3(0.2) = 1− 0.02 = 0.98.

Thus,
cos(0.2) ≈ 0.98,

and this value has error at most 10−4, that is, it is correct to at least four decimal places.
Check with a calculator (using radians, not degrees, for angles): cos(0.2) = 0.980066 . . .
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Lecture 10

Taylor series and limits

Taylor series can be used to calculate limits of the form

lim
x→a

f(x)

g(x)
,

where both f(x) and g(x) go to 0 as x → a. Sometimes, but not always, l’Hôpital’s rule can also
be used.

Example 10.1. Compute limx→0
sinx
x . First consider sinx for x near 0. By (8.3), we can write

sinx = x− x3

3!
+ o(x3),

where o(x3) denotes terms which are of order x4 and higher (because higher powers like x4 and
further go to 0 faster than x3, i.e. limx→0

o(x3)
x3

= 0). Then we can write

lim
x→0

sinx

x
= lim

x→0

x− x3

3 + o(x3)

x
= lim

x→0

x(1− x2

3 + o(x3)
x )

x
= lim

x→0
1− x2

3
+
o(x3)

x
= 1,

since

lim
x→0

o(x3)

x
= lim

x→0

o(x3)

x3
x2 = lim

x→0

o(x3)

x3
lim
x→0

x2 = 0 · 0 = 0.

Remark. Note that the o(xn) does not denote a concrete function, but any (converging) power series∑
akx

k around 0 such that the coefficients a0, . . . an are all equal to zero (as this guarantees that
limx→0

∑
akx

k

xn = 0). For example, o(x5) is simultaneously o(x3) as limx→0
o(x5)
x5

= 0 implies

lim
x→0

o(x5)

x3
= lim

x→0

o(x5)

x5
x2 = lim

x→0

o(x5)

x5
lim
x→0

x2 = 0 · 0 = 0.

(but the converse may not be true of course!), o(x
n)
x = o(xn−1) (as we can see in the example above

for n = 3), o(xn) · xm = o(xn+m) for general m,n, and o(xn) + o(xn) = o(xn).

Here is an example where we cannot use l’Hôpital’s rule, and where Taylor series works (see Q22
from the problem sheet)

Example 10.2. Let

f(x) = exp

(
sinx

1− 3x

)
and calculate

lim
x→0

f(x)− (x+ 1)

x cosx− ln(1 + x)
. (limit)

Trying l’Hôpital leads to a horrible mess which is not easier than the original function. Use Taylor
series instead.
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First consider f(x) for x near 0 (|x| < 1). By (8.3) and the geometric series 1
1−x = 1+x+x2+· · ·

for |x| < 1, we can write

sinx = x− x3

3!
+ o(x3), and

1

1− 3x
= 1 + 3x+ 9x2 + 27x3 + o(x3),

Thus

sinx

1− 3x
=

(
x− x3

3!
+ o(x3)

)
(1 + 3x+ 9x2 + 27x3 + o(x3))

= x− x3

3!
+ o(x3) + 3x2 + 9x3 + o(x3)

= x+ 3x2 +
53

6
x3 + o(x3).

We also know that ex = 1 + x+ x2

2 + · · · and plugging in the above, we get

f(x) = 1 + x+ 3x2 +
53

6
x3 + o(x3) +

(
x+ 3x2 +

53

6
x3 + o(x3)

)2

/2

+

(
x+ 3x2 +

53

6
x3 + o(x3)

)3

/6 + o(x3)

= 1 + x+ 3x2 +
53

6
x3 + o(x3) + x2/2 + (2x · 3x2)/2 + x3/6 + o(x3)

= 1 + x+
7

2
x2 + 12x3 + o(x3).

To calculate the final limit, we also need to Taylor expand cosx ln(1 + x) up to order 3:

cosx = 1− x2

2
+ o(x3), and ln(1 + x) = x− x2

2
+
x3

3
+ o(x3),

so x cosx− ln(1 + x) = x2

2 −
5
6x

3 + o(x3). Thus,

(limit) = lim
x→0

7
2x

2 + 12x3 + o(x3)
x2

2 −
5
6x

3 + o(x3)
=

7
2 + 12x+ o(x)
1
2 −

5
6x+ o(x)

=
7/2

1/2
= 7.

Another example of computing limits.

Example 10.3.

lim
x→0

x2

1−x + 2 cosx− 2

2x3 + 3x7
= lim

x→0

x2(
∑
xk) + 2 cosx− 2

2x3 + 3x7
=

lim
x→0

x2 + x3 + o(x3) + 2(1− x2

2 + o(x3))− 2

2x3 + 3x7
= lim

x→0

x2 + x3 + o(x3)− x2 + o(x3)

2x3 + o(x3)
=

lim
x→0

x3 + o(x3)

2x3 + o(x3)
= lim

x→0

1 + o(x3)
x3

2 + o(x3)
x3

=
limx→0 1 + o(x3)

x3

limx→0 2 + o(x3)
x3

=
1 + limx→0

o(x3)
x3

2 + limx→0
o(x3)
x3

=
1 + 0

2 + 0
= 1/2.
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Lecture 11

Matrices

Although the mathematical functions describing natural phenomena can be very complicated, one
can say that locally, everything behaves linearly. Think of the tangent of a curve at a point: it is a
line which approximates the function locally around a point. This is one reason why linear algebra
is so useful.

Some of the main players in linear algebra are matrices. Matrices help to streamline the solution
to system of linear equations:

Example 11.1. Solve the system {
x+ 2y = 1 (1)
−2x− 3y = 2 (2).

To solve this we transform the equations: First, equation (2) is transformed into “equation (1) added
twice to equation (2)”, that is

(2) −→ 2 · (1) + (2).

This gives the new system {
x+ 2y = 1 (1)
y = 4 (2).

The point here was to cancel all xs in (2). Now cancel y in (1) via

(1) −→ (1)− 2 · (2)

to obtain {
x = −7 (1)
y = 4 (2).

We have now obtained the solution.

As the above example demonstrates, what matters is not the variables x and y themselves, but
only the coefficients of the equations, that is the tables of numbers(

1 2
−2 −3

)
,

(
1
2

)
which encode the system of equations. These tables of numbers are called matrices. In general, a
matrix is a rectangular array of numbers, called its entries. A matrix is said to be an m×n matrix
if it has m rows and n columns. For example, 3 1

2
−1 0
57 π


is a 3× 2 matrix.

Here are some important special cases of matrices:
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• n = 1: A m× 1 matrix

...
...

 is a column vector (or just vector).

• m = 1: A 1×m matrix
(
· · · · · ·

)
is a row vector.

• n = m: An n× n matrix is a square matrix.

We can write a matrix

A =

a11 a12
a21 a22
a31 a32


where the aij are the entries, for i = 1, 2, 3 and j = 1, 2. This is a 3× 2 matrix, but we can extend
this notation to any m× n matrix: 

a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 .

We can write this compactly as (aij), remembering that i = 1, . . . ,m and j = 1, . . . , n.
The entries aij can be real of complex numbers. Assume first that aij ∈ R. We then let

Matm×n(R)

be the set of all m× n matrices with real entries, and

Matn(R)

be the set of n× n square matrices.

Matrix multiplication

There is a way to multiply two matrices, which is a bit unusual at first, but turns out to be very
useful.

Example 11.2. Let A and B be the matrices

A =

(
1 2
3 4

)
, B =

(
5
6

)
.

Then the product is

AB =

(
1 2
3 4

)(
5
6

)
=

(
1 · 5 + 2 · 6
3 · 5 + 4 · 6

)
=

(
17
39

)
.

Note that the product of the square matrix A with the vector matrix B is another vector matrix.
In general, a product of m× n matrix A and an n× l matrix B is m× l matrix C, and

cij =
n∑
k=1

aikbkj
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The reason why it is useful to define matrix multiplication like this is that we can write the
system of equations in (11.1) as(

1 2
−2 −3

)(
x
y

)
=

(
x+ 2y
−2x− 3y

)
=

(
1
2

)
.

We have therefore replaced a system with two equations by a single matrix equation. This is helpful
if we had a system of 1000 equations, especially if we want to solve it using a computer (which,
surely, we want).

We can also multiply two square matrices:

Example 11.3. Let

A =

(
1 2
3 4

)
, B =

(
0 2
0 0

)
.

Then

AB =

(
1 · 0 + 2 · 0 1 · 2 + 2 · 0
3 · 0 + 4 · 0 3 · 2 + 4 · 0

)
=

(
0 2
0 6

)
and

BA =

(
0 2
0 0

)(
1 2
3 4

)
=

(
0 · 1 + 2 · 3 0 · 2 + 2 · 4
0 · 1 + 0 · 3 0 · 2 + 0 · 4

)
=

(
6 8
0 0

)
.

So we see that AB is not equal to BA! Moreover,

BB = B2 =

(
0 2
0 0

)(
0 2
0 0

)
=

(
0 0
0 0

)
,

which is called the zero matrix 02×2 (or simply 0). We see that it can happen that the square of a
non-zero matrix is zero!

We can multiply a 2× 2 matrix with a 2× 1 one, but not with a 3× 1 or bigger vector matrix.
In general, we can multiply an m× n matrix by an n× k one. For example, a 2× 3 one by a 3× 2
one: (

1 −4 3
0 0 1

) 3 2
−1 0
0 5

 =

(
1 · 3 + (−4)(−1) + 3 · 0 1 · 2 + (−4) · 0 + 3 · 5
0 · 3 + 0 · (−1) + 1 · 0 0 · 2 + 0 · 0 + 1 · 5

)
=

(
7 17
0 5

)
.

Similarly, we have (
1 2

)(3
4

)
= (1 · 3 + 2 · 4) = (11),

and (
3
4

)(
1 2

)
=

(
3 · 1 3 · 2
4 · 1 4 · 2

)
=

(
3 6
4 8

)
.
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Summary

• If A ∈ Matm×n(R) and B ∈ Matn×k(R), we can multiply A and B and AB ∈ Matm×k(R).

• We can only multiply two matrices A and B if A has the same number of columns as B has
rows.

• We can have AB 6= BA. If AB = AB (which happens sometimes) the matrices A and B are
said to commute.

• We can have AB = 0, even though A 6= 0 and B 6= 0.

Other operations on matrices

• Addition of matrices is easy. Just add element-wise: (A+B)ij = aij + bij . For example,(
1 2
3 4

)
+

(
0 2
0 0

)
=

(
1 + 0 2 + 2
3 + 0 4 + 0

)
=

(
1 4
3 4

)
.

Since a+ b = b+ a for any real numbers a, b, it is clear that A+B = B+A, for two matrices
A,B.
Note that we can only add two matrices if they are of the same size.

• If λ ∈ R is a scalar and A = (aij) ∈ Matm×n(R), then λA = (λaij). For example, if λ = 2

and A =

(
1 2
3 4

)
, we have

2 ·
(

1 2
3 4

)
=

(
2 4
6 8

)
.

• If A is a matrix, we can turn its rows into columns (and columns into rows; same thing). The
result is called the transpose: AT of A, for example:

A =

(
1 2 3
4 5 6

)
, AT =

1 4
2 5
3 6

 .

• If A is an m× n matrix, then −A is the matrix 0m×n − A, where 0m×n is the zero matrix of
that size. In other words, to get −A just change sign on each of the entries of A.
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Lecture 12

Definition 12.1. A matrix A ∈ Matn(R) is called symmetric if A = AT , for example
(

2 1
1 0

)
. A

square matrix is called diagonal if all its off-diagonal entries are zero, for example:1 0 0
0 2 0
0 0 3

 .

Note that a diagonal matrix is always symmetric.

An application of matrices

Example 12.2. Suppose I want to compute the nutritional value of what someone eats throughout
a week. We can encode the data in matrices, for easy computation:

Nutrients: D =

pizza beer
282 140
13 0
7 1


kcal

fat

protein

,

Quantity: W =

M T W Th F Sa Su2 0 0 0 1 0 0
1 0 0 0 5 0 0

pizza

beer
.

If we take the matrix product P = DW , we get a 3× 7 matrix

P = (pij) =

M T W Th F Sa Su
704 0 0 0 982 0 0
26 0 0 0 13 0 0
15 0 0 0 12 0 0


kcal

fat

protein

.

So, for example, the total calorie intake on Monday is p11 = 704 and the total fat intake on Friday
is p25 = 13.

The point is that the matrix D always stays as a constant, even if the weekly eating habits
change, so this is a convenient way of encoding and computing such data. The matrix P encodes
everything we want in a neat form.

Matrices and series

Let A be an m×m matrix (i.e., a square one). For any integer n = 1, 2, 3, . . . we can compute the
nth power of A:

An = A ·A · · ·A︸ ︷︷ ︸
n times

.

Moreover, we define A0 = Im =


1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

, which is called the identity matrix of size m.
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So, if we have a polynomial p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n, then we can evaluate it on the
matrix A:

p(A) = c0Im + c1A+ c2A
2 + · · ·+ cnA

n.

The value p(A) is still an m×m matrix.
Now, let f(x) =

∑∞
n=0 cnx

n be a power series. We define

f(A) =

∞∑
n=0

cnA
n.

This series may or may not converge to a matrix.

Example 12.3. Let A =

0 x 0
0 0 y
0 0 0

. Then

A2 =

0 x 0
0 0 y
0 0 0

0 x 0
0 0 y
0 0 0

 =

0 0 xy
0 0 0
0 0 0


and

A3 =

0 0 xy
0 0 0
0 0 0

0 x 0
0 0 y
0 0 0

 =

0 0 0
0 0 0
0 0 0

 = 0.

So any higher power of A is also 0. Thus, we can compute any power series of A, for example, the
exponent:

exp(A) = eA =
∞∑
n=0

1

n!
An = I3 +A+

1

2
A2

=

1 0 0
0 1 0
0 0 1

+

0 x 0
0 0 y
0 0 0

+

0 0 xy/2
0 0 0
0 0 0


=

1 x xy/2
0 1 y
0 0 1

 .

Example 12.4. If we have a diagonal matrix, things are easy. Let A =

(
1 0
0 2

)
. Then

A2 =

(
12 0
0 22

)
=

(
1 0
0 4

)
, A3 =

(
1 0
0 23

)
, . . .

so we have eA =
∑∞

n=0
1
n!A

n =

(
e1 0
0 e2

)
.
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Systems of linear equations

We now return to one of the original motivations for matrices. We will explain how matrices can
be used to efficiently solve systems of linear equations.

Example 12.5. We solve system by successive transformations:
y + 3z = −1

x+ y + 2z = 1
2x+ y = 2

R1↔R2−−−−−→


x+ y + 2z = 1
y + 3z = −1
2x+ y = 2

(Ri denotes row i)
(the first step just swaps rows 1 and 2)

R3−2R1−−−−−→


x+ y + 2z = 1
y + 3z = −1
−y − 4z = 0

(eliminates x from row 3)

R3+R2−−−−→


x+ y + 2z = 1
y + 3z = −1
−z = −1

(eliminates y from row 3)
−R3−−−→


x+ y + 2z = 1
y + 3z = −1
z = 1

R2−3R3−−−−−→


x+ y + 2z = 1

y = −4
z = 1

(eliminates z from row 2)

R1−2R3−−−−−→


x+ y = −1
y = −4
z = 1

(eliminates z from row 1)

R1−R2−−−−→


x = 3
y = −4
z = 1

(eliminates y from row 1).

To describe a streamlined algorithm for solving systems, we reformulate the problem in terms
of matrices. The system above can be written0 1 3

1 1 2
2 1 0

xy
z

 =

−1
1
2

 .

If we let A be the 3× 3 matrix, x =

xy
z

 and b =

−1
1
2

, then we can just write this as Ax = b.

What did we do when we solved the system in (12.5)? We only transformed A and b in seven
steps:

Step 1 Swap two eqns/rows.

Steps 2,3,5,6,7 Add a multiple of an eqn to another eqn.

Step 4 Multiply an eqn by a number.

When we do something to the equations, we can do the same to the rows of the matrices A and b.
So, we create the augmented matrix of the system

(A|b) =

 0 1 3 −1
1 1 2 1
2 1 0 2

 .
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We can now perform the seven steps above in terms of this matrix alone. For example, Steps 1-2
would be  0 1 3 −1

1 1 2 1
2 1 0 2

 R1↔R2−−−−−→

 1 1 2 1
0 1 3 −1
2 1 0 2

 R3−2R1−−−−−→

 1 1 2 1
0 1 3 −1
0 −1 −4 0

 .

Elementary row operations

The operations we have used in Steps 1-7 above are called elementary row operations (ERO). The
imporant thing to note is that they do not change the solutions to the system. The goal is to obtain
the matrix  1 0 0 3

0 1 0 −4
0 0 1 1


since this gives us x = 3, y = −4, z = 1.

We will now use matrices to solve another system:

Example 12.6. Solve the system 
x+ y = 1
x− y = 2
2x− y = 3

.

We write the augmented matrix and perform ERO on it: 1 1 1
1 −1 2
2 −1 3

 R2−R1−−−−→

 1 1 1
0 −2 1
2 −1 3

 R3−2R1−−−−−→

 1 1 1
0 −2 1
0 −3 1


− 1

2
R2−−−−→

− 1
3
R3

 1 1 1
0 1 −1/2
0 1 −1/3

 R3−R2−−−−→

 1 1 1
0 1 −1/2
0 0 1/6

 .

The last row means that 0 · x+ 0 · y = 1/6, which is impossible. Thus the system has no solutions
at all.
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Lecture 13

Example 13.1. Here is another situation with three variables and three equations.
x+ y = 3
y + z = 1
x− z = 2

−→

 1 1 0 3
0 1 1 1
1 0 −1 2

 R3−R1−−−−→

 1 1 0 3
0 1 1 1
0 −1 −1 −1


R3+R2−−−−→

 1 1 0 3
0 1 1 1
0 0 0 0

 R3+R2−−−−→

 1 1 0 3
0 1 1 1
0 0 0 0


R1−R2−−−−→

 1 0 −1 2
0 1 1 1
0 0 0 0

 .

This is equivalent to the system{
x− z = 2
y + z = 1

⇐⇒
{
x = 2 + z
y = 1− z .

For any z ∈ R (without restriction) we thus have a solution

(x, y, z) = (2 + z, 1− z, z).

Hence, there are infinitely many solutions to this system.

Example 13.2.{
2x+ 2y + 3z = 7
x+ 2y − z = 0

−→
(

2 2 3 7
1 2 −1 0

)
R1−2R2−−−−−→

(
0 −2 5 7
1 2 −1 0

)
R1↔R2−−−−−→

(
1 2 −1 0
0 −2 5 7

)
R1+R2−−−−→

(
1 0 4 7
0 −2 5 7

)
− 1

2
R2−−−−→

(
1 0 4 7
0 1 −5/2 −7/2

)
−→

{
x+ 4z = 7
y − 5z/2 = −7/2

.

⇐⇒
{
x = 7− 4z
y = −7/2 + 5z/2

.

So for each z ∈ R we have a solution for x and y. Thus the system has infinitely many solutions.

Gauss elimination

This is the general algorithm to solve a linear system of equations. We have already seen the method
in several examples, but we will describe exactly what its goal is, and give more examples.

In order to solve a system (A | b), we use ERO to transform this matrix into one where A is as
close as possible to an identity matrix. Looking back at some of the previous examples, we got:
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• Example (12.5):  1 0 0 3
0 1 0 −4
0 0 1 1

 .

(unique solution)

• Example (13.1):  1 0 −1 2
0 1 1 1
0 0 0 0

 .

(infinitely many solutions)

It is not always possible to achieve an identity matrix, but something close to it is always possible,
namely a matrix such that:

• Every row starts with some 0-entries (possibly no 0-entries for the first row) followed by a
1-entry (unless the whole row is zero).

• The number of 0-entries in a row is more than in the preceding row (unless both the row and
the preceding one consist of 0-entries only).

• The first non-zero entry in each row lies below 0-entries of all previous rows.

Definition 13.3. Augmented matrices satisfying the above three conditions are said to be in Re-
duced Row Echelon Form (RREF).

In (13.4), the matrix  1 2 0 2
0 0 1 −1
0 0 0 0


is in RREF. We have no zeros in the beginning of the 1st row, two zeros in the 2nd, and three in
the 3rd. Note that the first non-zero entry in the 2nd row lies below a 0-entry of the 1st row.

Here is an example to illustrate RREF:

Example 13.4. 1 2 1 1
2 4 1 3
1 2 3 −1

 R2−2R1−−−−−→

 1 2 1 1
0 0 −1 1
1 2 3 −1

 R3−R1−−−−→

 1 2 1 1
0 0 −1 1
0 0 2 −2


−R2−−−→

 1 2 1 1
0 0 1 −1
0 0 2 −2

 R3−2R2−−−−−→

 1 2 1 1
0 0 1 −1
0 0 0 0

 R1−R2−−−−→

 1 2 0 2
0 0 1 −1
0 0 0 0


⇐⇒

{
x = 2− 2y
z = −1.

Thus, we have have infinitely many solutions (one for each y ∈ R).
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Here is another example, which shows how to apply the ERO systematically in Gaussian elimi-
nation to achieve RREF.

Example 13.5.
x+ 2y + z = 3
2x+ y − z = −3
x+ y + 2z = 4

2x+ 3y + 3z = 7

−→


1 2 1 3
2 1 −1 −3
1 1 2 4
2 3 3 7


R2−2R1
R3−R1
R4−2R1−−−−−→


1 2 1 3
0 −3 −3 −9
0 −1 1 1
0 −1 1 1


(we did this to clear the entries below the first 1-entry)

− 1
3
R2−−−−→


1 2 1 3
0 1 1 3
0 −1 1 1
0 −1 1 1

 R3+R2
R4+R2−−−−→


1 2 1 3
0 1 1 3
0 0 2 4
0 0 2 4

 1
2
R3−−−→


1 2 1 3
0 1 1 3
0 0 1 2
0 0 2 4


R4−2R3−−−−−→


1 2 1 3
0 1 1 3
0 0 1 2
0 0 0 0

 R1−R3
R2−R3−−−−→


1 2 0 1
0 1 0 1
0 0 1 2
0 0 0 0

 R1−2R2−−−−−→


1 0 0 −1
0 1 0 1
0 0 1 2
0 0 0 0

 .

This last matrix is in RREF, and the matrix to the left of the vertical line is an identity matrix
with an extra zero-row added. This means that the system has a unique solution:

x = −1, y = 1, z = 2.
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Lecture 14

Structure of solutions of linear systems

The discussion and examples so far show that three cases can appear:

• A unique solution: The RREF looks like an identity matrix with extra zero-rows:

1 0 0 ∗

0
. . . 0

...
0 0 1 ∗
0 0 0 0
...

...
...

...
0 0 0 0


.

• No solutions: The RREF has a row with only zeros on the left and a non-zero entry on the
right.

• Infinitely many solutions: The number of rows in the RREF is smaller than the number of
columns (when zero rows are ignored).

A linear system

Ax = 0 =

0
...
0


is called homogeneous. The set of solutions is then called the kernel of the matrix A. There is
always at least one solutions: x = 0. If the RREF of (A | 0) has less rows than columns, then the
system Ax = 0 also has non-zero solutions.

Now, suppose we have a linear system

Ax = b,

and let x1 and x2 be two solutions, that is, Ax1 = b and Ax2 = b. Then

A(x1 − x2) = b− b = 0.

Thus the difference of any two solutions is a solutions to a homogeneous system. In particular, if
we fix one solution x0 such that Ax0 = b, then any solution of Ax = b has the form

x = x0 + xh,

where xh runs through all the solutions to the homogeneous system Ax = 0.
Thus, to solve the system Ax = b, we need to know:

• one solution to Ax = b,

• all the solutions to Ax = 0.

34



Example 14.1.{
x+ y = 1

2x+ 2y = 2
−→

(
1 1 1
2 2 2

)
R2−2R1−−−−−→

(
1 1 1
0 0 0

)
⇐⇒ x+ y = 1.

So one solution is, for example, x0 =

(
0
1

)
. Now, the solutions of Ax = 0 are given by

x+ y = 0,

that is (
x
y

)
=

(
λ
−λ

)
, λ ∈ R.

Thus, the solutions of the original system are(
x
y

)
=

(
0
1

)
+

(
λ
−λ

)
=

(
λ

1− λ

)
, for λ ∈ R.

Systems with a parameter

Example 14.2. Find the values of λ ∈ R such that the following system has no solutions, one
solution, or infinitely many solutions:

x+ λy + z = 1
λx+ y + (λ− 1)z = λ

x+ y + z = λ+ 1
.

We use ERO to put matrix of the system into RREF: 1 λ 1 1
λ 1 λ− 1 λ
1 1 1 λ+ 1

 R2−λR1−−−−−→
R3−R1

 1 λ 1 1
0 1− λ2 −1 0
0 1− λ 0 λ

 R2↔R3−−−−−→

 1 λ 1 1
0 1− λ 0 λ
0 1− λ2 −1 0


R3−(1+λ)R2−−−−−−−−→

 1 λ 1 1
0 1− λ 0 λ
0 0 −1 −λ(1 + λ)

 R1+R3−−−−→
−R3

 1 λ 0 1− λ(1 + λ)
0 1− λ 0 λ
0 0 1 λ(1 + λ)

 .

To go further, we would have to divide the second row by 1−λ. This can only be done if 1−λ 6= 0,
that is, if λ 6= 1, so let’s assume this for the moment. If λ 6= 1:

1
1−λR2

−−−−→

 1 λ 0 1− λ(1 + λ)

0 1 0 λ
1−λ

0 0 1 λ(1 + λ)

 R1−λR2−−−−−→

 1 0 0 1− λ(1 + λ)− λ2

1−λ
0 1 0 λ

1−λ
0 0 1 λ(1 + λ)

 .

Since the left side in the RREF is an identity matrix, the system has one solution in this case.
We now need to consider the case λ = 1: After the second step above, we then have the matrix 1 1 1 1

0 0 −1 0
0 0 0 1

 .
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This is an inconsistent system, which has no solutions.
Conclusion: For λ 6= 1 there is a unique solution, namely

x = 1− λ(1 + λ)− λ2

1− λ

y =
λ

1− λ
z = λ(1 + λ).

For λ = 1 there are no solutions, and for no value of λ does the system have infinitely many solutions.
Note: in the second step above, we note that (1− λ2) = (1− λ)(1 + λ). Instead of steps 2 and

3, we could have divided the row (
0 1− λ 0 λ

)
by 1 − λ in order to get a 1 after the first 0. However, then we would have to assume that λ 6= 1,
because we can’t divide by 0. We would therefore have to consider two cases: first λ 6= 1 and then
λ = 1. This is a perfectly fine approach, but here we tried to avoid splitting into cases for as long
as we could.

Example 14.3. Find the values of λ ∈ R such that the following system has no solutions, one
solution, or infinitely many solutions:

x+ y + z = −1
λx+ y + z = −1
x+ λ2y + z = λ

.

Again, we use ERO to simplify the augmented matrix of the system: 1 1 1 −1
λ 1 1 −1
1 λ2 1 λ

 R2−λR1−−−−−→
R3−R1

 1 1 1 −1
0 1− λ 1− λ λ− 1
0 λ2 − 1 0 λ+ 1


If λ = 1, this results in

 1 1 1 −1
0 0 0 0
0 0 0 2

, which has no solution.

Otherwise, we continue:

R2/(1−λ)−−−−−−→

 1 1 1 −1
0 1 1 −1
0 λ2 − 1 0 λ+ 1

 R1−R2−−−−→

 1 0 0 0
0 1 1 −1
0 λ2 − 1 0 λ+ 1


Now, if λ = −1, this results in

 1 0 0 0
0 1 1 −1
0 0 0 0

 which has infinitely many solutions.

Otherwise, we continue:

R3/(λ+1)−−−−−−→

 1 0 0 0
0 1 1 −1
0 λ− 1 0 1

 R2−R3/(λ−1)−−−−−−−−−→
R3/(λ−1)

 1 0 0 0
0 0 1 −1− 1/(λ− 1)
0 1 0 1/(λ− 1)


which has a unique solutions.

Summarizing, the system has no solutions if λ = 1, infinitely many solutions if λ = −1, and a
unique solution otherwise.
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Lecture 15

The determinant

The determinant is an important number associated to a square matrix denoted by detA or |A|.
We will define the determinant recursively. First, for a 1×1 matrix A = (a) we set the determinant
detA = a. For an n × n matrix, we will now define the determinant in terms of determinants of
(n− 1)× (n− 1) matrices.

i) Let A = (aij), for 1 ≤ i, j ≤ n.

ii) For each i and j, let Mij be the determinant of the matrix obtained by removing the ith row
and the jth column of A.

iii) The determinant of A, denoted detA or |A|, is

detA = a11M11 − a21M21 + a31M31 + · · ·+ (−1)n+1an1Mn1

=
n∑
i=1

(−1)i+1ai1Mi1.

The numbers Cij = (−1)i+jMij are called cofactors of matrix A. The definition can be written in
the form

detA =

n∑
i=1

ai1Ci1,

this expression is called the expansion of detA along the first column.

Example 15.1. Compute detA, where A =

(
1 2
2 5

)
. We have

M11 = det(5) = 5, M21 = det(2) = 2.

Thus detA = 1 · 5− 2 · 2 = 1.
In general,

det

(
a b
c d

)
= ad− bc.

Fact. We can compute detA using expansion along any column: given j = 1, . . . , n, we have

detA =
n∑
i=1

aijCij ,

Moreover, we can also use expansions along rows: given i = 1, . . . , n, we have

detA =

n∑
j=1

aijCij ,

37



Example 15.2. Compute detA, where A =

1 0 1
2 1 0
0 2 3

. Using expansion along the third row, we

get

detA = 0 ·
∣∣∣∣ 0 1

1 0

∣∣∣∣− 2 ·
∣∣∣∣ 1 1

2 0

∣∣∣∣+ 3 ·
∣∣∣∣ 1 0

2 1

∣∣∣∣ = −2(−2) + 3 = 7.

If we expand along the second column, we obtain

detA = −0 ·
∣∣∣∣ 2 0

0 3

∣∣∣∣+ 1 ·
∣∣∣∣ 1 1

0 3

∣∣∣∣− 2 ·
∣∣∣∣ 1 1

2 0

∣∣∣∣ = 3− 2(−2) = 7.

Properties of the determinant

0) Determinant does not depend on the choice of the row or column in the expansion.

1) det In = 1.

2) detAT = detA.

3) Multiplicative: if A and B are two square matrices, we have

det(AB) = detA · detB.

4) If A ∈ Matn is diagonal, then detA =
∏n
i=1 aii.

5) A matrix A is called upper-triangular if aij = 0 for all i > j. For upper-triangular matrices
detA =

∏n
i=1 aii as well.

Note that we know how to compute the determinant of an upper-triangular matrix, and we
also know how to transform a matrix to an upper-triangular form by row operations. We are now
interested in the following question: what is the behavior of the determinant under ERO?
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Lecture 16

Matrices of ERO

ERO can be written in terms of multiplication of matrices. Denote by Iij ∈ Matn the n× n matrix
with (ij)-element equal to 1 and all other elements being zero. Let A ∈ Matn. Then:

• ERO of type 1, i.e. adding row k of Amultiplied by λ to row i of A, is equivalent to multiplying
A by I + λIik from the left:

A
Ri+λRk−−−−−→ (I + λIik)A

Note that det(I + λIik) = 1, so by the multiplicative property of the determinant EROs of
first type leave the determinant intact.

• ERO of type 2, i.e. swapping rows i and k of A, is equivalent to multiplying A by I − Iii −
Ikk + Iik + Iki from the left:

A
Ri↔Rk−−−−−→ (I − Iii − Ikk + Iik + Iki)A

Since det(I−Iii−Ikk+Iik+Iki) = −1, EROs of second type change the sign of the determinant.

• ERO of type 3, i.e. multiplying row i of A by λ, is equivalent to multiplying A by I+(λ−1)Iii
from the left:

A
λRi−−→ (I + (λ− 1)Iii)A

Since det(I + (λ− 1)Iii) = λ, EROs of third type multiply the determinant by λ.

Therefore, we can compute the determinant by Gauss elimination. Note that we can always
transform a matrix to an upper-triangular form without using ERO of type 3 (though sometimes
we may use them for convenience).

Example 16.1. Let A =

1 2 3
2 0 1
0 1 0

. Then

|A| =

∣∣∣∣∣∣
1 2 3
2 0 1
0 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 3
0 −4 −5
0 1 0

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 2 3
0 1 0
0 −4 −5

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 2 3
0 1 0
0 0 −5

∣∣∣∣∣∣ = −(−5) = 5.

Example 16.2. Let A =


1 2 1 1
3 1 2 5
−2 0 3 2
0 1 −2 1

 . Then

|A| =

∣∣∣∣∣∣∣∣
1 2 1 1
3 1 2 5
−2 0 3 2
0 1 −2 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 1 1
0 −5 −1 2
0 4 5 4
0 1 −2 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 −2 1
0 4 5 4
0 −5 −1 2

∣∣∣∣∣∣∣∣ =

−

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 −2 1
0 0 13 0
0 0 −11 7

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 −2 1
0 0 13 0
0 0 0 7

∣∣∣∣∣∣∣∣ = −13 · 7 = −91
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Algorithm

Use Gauss elimination to transform a matrix A to an upper-triangular matrix T by ERO of types
1 and 2. Then detA = (−1)m detT , where m is the number of ERO of type 2 we have applied.

Further properties of determinant

6) If A contains a zero row (or column) then detA = 0.

7) If A contains two similar rows (or columns) then detA = 0.

The inverse of a matrix

Let A = (aij) ∈ Matn(R) be an n× n matrix, and I = In the identity matrix (of size n). Then

AI = IA = A.

In other words, the identity matrix does not change another matrix, when multiplied.
Now, let Ax = b be a linear system and suppose that there is a matrix B such that

BA = I.

Then we can multiply by B on both sides:

BAx = Bb⇐⇒ x = Bb.

This says that there exists a unique solution x = Bb to the system.

Definition 16.3. Let A be a square matrix. A matrix B is called the inverse of A if

AB = BA = I.

The inverse of A (if it exists) is denoted A−1.
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Lecture 17

Example 17.1. The system {
x+ 2y = 1
2x+ 5y = −3

.

can be written Ax = b, where A =

(
1 2
2 5

)
and b =

(
1
−3

)
. Let

B =

(
5 −2
−2 1

)
.

We can check that BA =

(
1 0
0 1

)
= I. Thus the solution is

x = Bb =

(
5 −2
−2 1

)(
1
−3

)
=

(
11
−5

)
.

So, we see that B is the key to solving the system. Let’s now compute the RREF:(
1 2 1
2 5 −3

)
R2−2R1−−−−−→

(
1 2 1
0 1 −5

)
R1−2R2−−−−−→

(
1 0 11
0 1 −5

)
= (I | Bb).

In particular, the RREF is an identity matrix followed by a solution vector.

We saw above that the inverse of
(

1 2
2 5

)
is
(

5 −2
−2 1

)
. The inverse does not always exist. For

example, there is no inverse to the matrix (
1 2
0 0

)
.

A matrix A having an inverse is called invertible.
Observe that the matrix above has zero determinant. Determinant and inverse are related by

the following statement:

Theorem 17.2. A matrix A has an inverse if and only if detA 6= 0.

Why is this theorem true? Assume first that A has an inverse A−1. Then, by the multiplicative
property of the determinant,

detAdetA−1 = det(A ·A−1) = det I = 1,

which implies that detA 6= 0.
Now we need to understand why does detA 6= 0 imply the existence of the inverse. First, we

note the following.

Proposition 17.3. If detA 6= 0 then a system of linear equations Ax = b has a unique solution.
In particular, RREF of A is the identity matrix.

Indeed, observe that RREF of A is obtained from A by ERO, which implies that the determinant
of the RREF is a non-zero multiple of detA. Thus, if detA 6= 0, the determinant of RREF is not
zero either, so RREF of A does not contain zero rows. Since it is a square matrix, by the definition
of RREF we conclude that it is the identity matrix I, and the system has a unique solution.

Now, for every matrix A with RREF of A being the identity matrix we will explicitly construct
the inverse.
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Algorithm: finding the inverse using ERO

Let detA 6= 0, so that the RREF of A is the identity matrix In. Then we can transform A to In
by ERO, let k be the number of ERO required. Denote by E1, . . . , Ek the matrices of these ERO.
Then

EkEk−1 . . . E1 ·A = In.

Denote B = EkEk−1 . . . E1, then we see that BA = In, so B = A−1 is the required inverse of A!
Further, if we create an augmented matrix (A | In) and apply to it the row operations above, then
we obtain

(A | In)→ (EkEk−1 . . . E1 ·A |EkEk−1 . . . E1 · In) = (In |A−1In) = (In |A−1),

which leads to the following

Algorithm. Create the augmented matrix (A | In), apply to it ERO to transform A to In. Then
the resulting matrix on the right is A−1.

We can summarize the discussion above:

Corollary 17.4. For A ∈ Matn the following are equivalent:

• detA 6= 0;

• RREF of A is the identity matrix In;

• A is invertible.

Computing the inverse

Suppose that A is a matrix which has an inverse (i.e., detA 6= 0). To compute the inverse, we use
the algorithm above based on the Gauss elimination on an augmented matrix.

Example 17.5. Compute the inverse of A =

3 0 1
2 1 1
0 2 1

. We perform Gauss elimination on the

augmented matrix

(A | I3) =

 3 0 1 1 0 0
2 1 1 0 1 0
0 2 1 0 0 1

 R1/3−−−→

 1 0 1/3 1/3 0 0
2 1 1 0 1 0
0 2 1 0 0 1

 R2−2R1−−−−−→

R2−2R1−−−−−→

 1 0 1/3 1/3 0 0
0 1 1/3 −2/3 1 0
0 2 1 0 0 1

 R3−2R2−−−−−→

 1 0 1/3 1/3 0 0
0 1 1/3 −2/3 1 0
0 0 1/3 4/3 −2 1

 R1−R3−−−−→
R2−R3

R2−2R1−−−−−→

 1 0 0 −1 2 −1
0 1 0 −2 3 −1
0 0 1/3 4/3 −2 1

 3R3−−→

 1 0 0 −1 2 −1
0 1 0 −2 3 −1
0 0 1 4 −6 3

 .

Once we reach an identity matrix to the left, we stop. The inverse of A is on the right of the vertical
line.

42



We now verify the answer: −1 2 −1
−2 3 −1
4 −6 3

3 0 1
2 1 1
0 2 1

 =

1 0 0
0 1 0
0 0 1

 .

Example 17.6. Compute the inverse of A =

1 0 1
0 1 1
1 1 2

. As in the previous example, we perform

Gauss elimination on the augmented matrix

(A | I3) =

 1 0 1 1 0 0
0 1 1 0 1 0
1 1 2 0 0 1

 R3−R1−−−−→

 1 0 1 1 0 0
0 1 1 0 1 0
0 1 1 −1 0 1

 R3−R2−−−−→

R3−R2−−−−→

 1 0 1 1 0 0
0 1 1 0 1 0
0 0 0 −1 −1 1

 .

The matrix on the left has a zero row, so it cannot be transformed to the identity matrix. Therefore,
A is not invertible.

Properties of the inverse

• (A−1)−1 = A (since A ·A−1 = In).

• (AT )−1 = (A−1)T (since AT · (A−1)T = (A ·A−1)T = In).

• (AB)−1 = B−1A−1 (since B−1A−1AB = B−1(A−1A)B = B−1InB = B−1B = In).

• If A−1 exists then it is unique.

Cofactor method

Recall that a cofactor Cij of a matrix A ∈ Matn is defined by Cij = (−1)i+jMij , where Mij is
the determinant of an (n − 1) × (n − 1)-matrix obtained from A by removing i-th row and j-th
column. Denote by C the matrix composed of cofactors of A, and consider its transpose CT , i.e.
(CT )ij = Cij .

Example 17.7. If A =

(
2 1
4 3

)
, then C =

(
3 −4
−1 2

)
, so CT =

(
3 −1
−4 2

)
. Thus,

ACT =

(
2 1
4 3

)(
3 −1
−4 2

)
=

(
2 0
0 2

)
= 2I2 = (detA) I2.

In particular, this implies that A · 1
detAC

T = I2, and thus A−1 = 1
detAC

T = 1
2

(
3 −1
−4 2

)
.
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Lecture 18

Let us now follow Example 17.7 and compute ACT .

(ACT )ii =
n∑
k=1

aik(C
T )ki =

n∑
k=1

aikCik = detA,

so all the diagonal elements of the matrix ACT are equal to detA. Now, we need to compute

(ACT )ij =
n∑
k=1

aik(C
T )kj =

n∑
k=1

aikCjk.

Given i 6= j, create a new matrix A′ in the following way: take matrix A and substitute j-th row
by i-th row, i.e.

(A′)lk =

{
alk if l 6= j
aik if l = j

Observe that A′ has two similar rows (i-th and j-th ones), so its determinant is equal to zero.
Therefore, for i 6= j

(ACT )ij =
n∑
k=1

aik(C
T )kj =

n∑
k=1

aikCjk =
n∑
k=1

(A′)jkCjk = detA′ = 0.

Thus, ACT = (detA) · In, so A
(

1
detAC

T
)

= In, which implies

Corollary 18.1.

A−1 =
1

detA
CT .

Example 18.2. Let A ∈ Mat2, A =

(
a b
c d

)
. Then C =

(
d −c
−b a

)
, CT =

(
d −b
−c a

)
, detA =

ad− bc, so

A−1 =
1

ad− bc

(
d −b
−c a

)
.

For example, for A =

(
1 2
3 4

)
we have

A−1 =
1

−2

(
4 −2
−3 1

)
=

1

2

(
−4 2
3 −1

)
.

Special types of matrices

We will list several important types of (square) matrices that show up frequently in various appli-
cations.
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Diagonal and triangular matrices. Recall that a square matrix A = (aij) is diagonal if

aij = 0 for all i 6= j, i.e. all off-diagonal elements are equal to zero. For example, A =

(
−4 0
0 −1

)
is diagonal. Some easy properties of diagonal matrices:

• detA = Πn
i=1aii;

• A−1 (if exists) is also diagonal with (A−1)ii = a−1ii ;

• any two diagonal matrices A,B ∈ Matn commute, i.e. AB = BA.

Recall also that a square matrix A is called upper-triangular if aij = 0 for i > j. Similarly, we
can define a lower-triangular matrix as one with aij = 0 for i < j. Some properties:

• If A is upper- or lower-triangular, then detA = Πn
i=1aii;

• A−1 of an upper-triangular (lower-triangular) matrix (if exists) is also upper-triangular (re-
spectively, lower-triangular);

• a product of two upper-triangular (lower-triangular) matrices is also upper-triangular (respec-
tively, lower-triangular).

Symmetric, anti-symmetric, Hermitian and anti-Hermitian matrices. Recall that a ma-
trix A is symmetric if AT = A, i.e. aij = aji for all i, j. We say that a matrix is anti-symmetric

(or skew-symmetric) if AT = −A, e.g. A =

(
−4 −2
2 −1

)
is skew-symmetric. Note that every

square matrix can be written as a sum of a symmetric and a skew-symmetric ones:

A =
A+AT

2
+
A−AT

2
.

Complex analogs of real symmetric matrices are Hermitian matrices. For a complex number z
we denote by z∗ the complex conjugate of z (note that in mathematics it is usually denoted by z̄),
and by A∗ the matrix with all entries being conjugate, i.e. (A∗)ij = a∗ij . A Hermitian conjugate
of a matrix A ∈ Matn(C) is the matrix A† = (AT )∗.

Example 18.3. Let A =

(
−4i 2 + i
3i −1

)
. Then AT =

(
−4i 3i
2 + i −1

)
, so the Hermitian conjugate of

A is A† =

(
4i −3i

2− i −1

)
.

A matrix A is called Hermitian if A† = A, and anti-Hermitian if A† = −A.

Example 18.4. A matrix A =

(
−4 2 + i

2− i −1

)
is Hermitian, and B =

(
−4i −2 + i
2 + i 0

)
is anti-

Hermitian.

Note that any symmetric matrix with real values is Hermitian.
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Orthogonal matrices. A matrix A ∈ Matn is called orthogonal if AAT = In, i.e. A−1 = A.
Since detA−1 = (detA)−1, we see that the square of the determinant of any orthogonal matrix is
equal to 1:

1 = det I = det(A−1A) = detAdetA−1 = (detA)2,

so detA = ±1.

Example 18.5. Matrices
(

0 −1
1 0

)
and, in general

(
cosϕ − sinϕ
sinϕ cosϕ

)
are orthogonal.

The set of all orthogonal (n× n) matrices is denoted by O(n). The main property of othogonal

matrices is the following. For any vector v =

(
x
y

)
define its length by

√
x2 + y2 (cf. Pythagoras

Theorem). Then multiplication by an orthogonal matrix does not change the length.

Example 18.6. (
cosϕ − sinϕ
sinϕ cosϕ

)(
x
y

)
=

(
x cosϕ− y sinϕ
x sinϕ+ y cosϕ

)
,

and
(x cosϕ− y sinϕ)2 + (x sinϕ+ y cosϕ)2 = x2 + y2.

This property holds for an orthogonal matrix of any size. Also, since (AT )−1 = (A−1)T , an
inverse of an orthogonal matrix is also orthogonal. Further, a product of orthogonal matrices is also
an orthogonal: if A,B ∈ O(n), then

(AB)T (AB) = BTATAB = BT (ATA)B = BT IB = BTB = I.
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Lecture 19

Unitary and normal matrices A complex matrix A is called unitary if A†A = I, i.e. A† = A−1.
Note that real orthogonal matrices are also unitary. The set of all unitary (n×n) matrices is denoted
by U(n).

Example 19.1. A matrix A =

(
i 0
0 1

)
is unitary: A† = A∗ =

(
−i 0
0 1

)
, so A†A = I.

Similarly to orthogonal matrices, an inverse of a unitary matrix is also unitary, and a product
of unitary matrices is a unitary matrix. Also,

1 = det I = det(A−1A) = det(A†A) = detA† detA = (detA)∗ detA = |detA|2,

so |detA| = 1.

Unitary matrices preserve the length l(v) of a complex vector v =

z1. . .
zn

 defined by l(v) =√
|z1|2 + · · ·+ |zn|2.
A matrix A is called normal if A†A = AA†, i.e. if it commutes with its Hermitian conjugate.

For example, Hermitian and unitary matrices are normal. An inverse of a normal matrix (if exists)
is also normal.

Vector spaces

Let

Rn = {

x1...
xn

 | xi ∈ R}

be the set of n× 1 column vectors of real numbers. Similarly, if we replace R by C we get Cn. We
can add two vectors a1...

an

+

b1...
bn

 =

a1 + b1
...

an + bn


and we can multiply a vector by a scalar λ ∈ R (or λ ∈ C if we work over C):

λ

a1...
an

 =

λa1...
λan

 .

(but note that we cannot multiply two vectors because the matrix product is not defined for two
n× 1 matrices, unless n = 1!)

Definition 19.2. A vector space is a set with two operations: addition and scalar multiplication.
Its elements are called vectors. In particular, Rn and Cn are vector spaces.
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Definition 19.3. Let v1, v2, . . . , vm be vectors and λ1, λ2, . . . , λm ∈ R (or C). The vector

λ1v1 + λ2v2 + · · ·+ λmvm

is called a linear combination of v1, v2, . . . , vm.

Example 19.4. Let v1 =

1
0
0

, v2 =

0
1
0

 in R3. Then any vector

xy
0

 is a linear combination

of v1 and v2 because xy
0

 = x

1
0
0

+ y

0
1
0

 = xv1 + yv2.

Note that the vector

0
0
1

 is not a linear combination of v1 and v2.

A set of vectors v1, v2, . . . , vm is called linearly dependent if one of the vectors is a linear com-
bination of the others, that is, if

vi = λ1v1 + · · ·+ λi−1vi−1 + λi+1vi+1 + · · ·+ λmvm,

for some 1 ≤ i ≤ m. This is equivalent to saying that there exist scalars λ1, . . . , λm (not all of them
zero!) such that

λ1v1 + · · ·+ λmvm = 0.

If v1, v2, . . . , vm are not linearly dependent, they are said to be linearly independent. Mathematically,
this means that the relation

λ1v1 + · · ·+ λmvm = 0

can only hold if λ1 = λ2 = · · · = λm = 0.

Example 19.5.

• v1 =

(
1
1

)
and v2 =

(
2
2

)
in R2 are linearly dependent, because

2v1 − v2 = 0.

•
(

1
0

)
and

(
1
−1

)
are linearly independent, because if

λ1v1 + λ2v2 =

(
λ1
0

)
+

(
λ2
−λ2

)
=

(
λ1 + λ2
−λ2

)
= 0 =

(
0
0

)
,

then we must have
λ1 + λ2 = 0, and − λ2 = 0,

that is, λ1 = λ2 = 0.
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• v1 =

0
1
0

, v2 =

1
0
1

, v3 =

1
1
1

 in R3 are linearly dependent because we have the relation

v1 + v2 = v3.

Definition 19.6. The span of the vectors v1, . . . , vm, written

span{v1, . . . , vm},

is the set of all vectors which are linear combinations of v1, . . . , vm.

Example 19.7.

• span
{(

1
0

)
,

(
1
−1

)}
= R2, since for any

(
a
b

)
∈ R2 there are λ1, λ2 such that

(
a
b

)
= λ1

(
1
0

)
+

λ2

(
1
−1

)
, namely,λ2 = −b, λ1 = a+ b.

•

span


0

1
0

 ,

1
0
1

 ,

1
1
1

 =

λ1
0

1
0

+ λ2

1
0
1

+ λ3

1
1
1


=

(λ1 + λ3)

0
1
0

+ (λ2 + λ3)

1
0
1

 = span


0

1
0

 ,

1
0
1

 .
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Lecture 20

Bases

Let V be a vector space (e.g., Rn or Cn). The span of some vectors in V is also a vector space,
which can be all of V or smaller.

Definition 20.1. A basis of V is a set of vectors v1, . . . , vm such that:

i) this set is linearly independent,

ii) span{v1, . . . , vm} = V .

Example 20.2. The vectors (
1
0

)
,

(
0
1

)
form a basis for R2 (or C2), called the standard basis:

• They span all of R2 (or C2): any vector
(
x
y

)
can be written as

x

(
1
0

)
+ y

(
0
1

)
.

• They are linearly independent: If λ1
(

1
0

)
+ λ2

(
0
1

)
= 0, then λ1 = λ2 = 0.

There are other bases for R2, for example (
1
0

)
,

(
1
−1

)
from Example (19.7).

On the other hand, the three vectors(
1
0

)
,

(
0
1

)
,

(
1
−1

)
also span R2, but they are not linearly independent:(

1
−1

)
=

(
1
0

)
−
(

0
1

)
,

so these three vector do not form a basis.

Theorem 20.3. Every vector space has a basis. For a given vector space V , the number of elements
in a basis (if finite) is always the same. This number is called the dimension of V (notation: dimV ).

For example, R2 (or C2) has dimension two. In R3 (or C3) we have the standard basis1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

so these spaces have dimension 3. More generally, the spaces Rn and Cn are n-dimensional.
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Matrices as linear maps

Let A ∈ Matn(R) be a square matrix of size n. We can define a function from the vector space Rn
to itself:

LA : Rn −→ Rn, LA(x) = Ax.

This map is compatible with addition and scalar multiplication, that is,

LA(x+ y) = A(x+ y) = Ax+Ay = LA(x) + LA(y)

and
LA(λx) = A(λx) = λAx = λLA(x), λ ∈ R.

A function satisfying these two properties is called a linear map.
So, from a matrix, we get a linear map. We can also go the other way:

Given a linear map f : Rn −→ Rm, we can write down a matrix A ∈ Matm×n(R), such
that LA = f .

The way to do this is the following. Let {v1, . . . , vn} be the standard basis of Rn, and {u1, . . . , um}
is the standard basis in Rm. Then every f(vj) is a linear combination of vectors of {u1, . . . , um},
so we can write for every j = 1, . . . , n

f(vj) = a1ju1 + a2ju2 + · · ·+ amjum =
m∑
i=1

aijui.

Then f = LA, where A = (aij).
Here is an example to show how this is done.

Example 20.4. Let f : R3 −→ R3 be the function

f

xy
z

 =

 z
−y
x

 .

We first show that f is a linear map:

• Additivity:

f

xy
z

+

ab
c

 = f

x+ a
y + b
z + c

 =

 z + c
−(y + b)
x+ a

 =

 z
−y
x

+

 c
−b
a

 = f

xy
z

+ f

ab
c

.

• Scalar multiplication: f

λ
xy
z

 =

 λz
−λy
λx

 = λf

xy
z

.

We will now find a matrix A such that LA = f . To do this, we choose the standard basis of Rn.:1
0
0

 ,

0
1
0

 ,

0
0
1

 .
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To find the matrix with respect to this basis, we evaluate f on each basis vector:

f

1
0
0

 =

0
0
1


f

0
1
0

 =

 0
−1
0


f

0
0
1

 =

1
0
0

 .

We then put the three resulting vectors together as the columns of a matrix:

A =

0 0 1
0 −1 0
1 0 0

 .

Then our original map f equals LA:

LA

xy
z

 =

0 0 1
0 −1 0
1 0 0

xy
z

 =

 z
−y
x

 = f

xy
z

 .
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Lecture 21

Kernel, image and rank

Let A ∈ Matm×n, and LA : V →W be a linear map. Here dimV = n, dimW = m.

Definition 21.1. • A kernel of LA is the set kerLA = {v ∈ V | LA(v) = 0}.

• An image of LA is the set imA = {w ∈W | w = LA(v) for some v ∈ V }.

• Recall that a kernel of a matrix A is the set of solutions of the homogeneous system Ax = 0.
Thus, the kernel of A is precisely the kernel of LA.

Example 21.2. • LA = 0 : V →W , v 7→ 0 ∈W . Then kerLA = V , imLA = 0 ∈W .

• LA = id : V → V , v 7→ v (identity map). Then kerLA = 0, imLA = V .

• LA : R2 → R, LA
(
x
y

)
= x. Then kerLA = {

(
0
y

)
| y ∈ R}, imLA = R.

Note that both the image and the kernel of a linear map are vector spaces themselves.

Definition 21.3. A rank of a linear map LA is the dimension of its image. Equivalently, it is
the maximal number of linearly independent columns in the corresponding matrix A. The latter is
called a rank of A, notation: rkA.

Example 21.4. rk

(
0 0
0 0

)
= 0; rk

(
0 1
0 0

)
= 1; rk

(
0 1
1 0

)
= 2; rk

(
0 1 1
1 0 1

)
= 2.

Fact. Let A ∈ Matm×n. Then

• rkA is also equal to the maximal number of linearly independent rows of A;

• therefore, rkA does not change under ERO;

• thus, the rank of A is actually equal to the number of non-zero rows in the RREF of A.

Example 21.5. Let A =

(
0 1 1 3
1 2 1 6

)
. The columns of A are the vectors v1 =

(
0
1

)
, v2 =

(
1
2

)
,

v3 =

(
1
1

)
and v4 =

(
3
6

)
. Vectors v1 and v2 are linearly independent, but the other vectors are

linear combinations of v1 and v2: v3 = v2 − v1, v4 = 2v2. Therefore, the maximal number of linear
independent columns is 2, so rkA = 2.

On the other hand, we can compute RREF of A:(
0 1 1 3
1 2 1 6

)
R1↔R2−−−−−→

(
1 2 1 6
0 1 1 3

)
R1−2R2−−−−−→

(
1 0 −1 0
0 1 1 3

)
Thus, the RREF of A has two non-zero rows, so we see again that rkA = 2.

Let now A ∈ Matn. We say that A is singular if rkA < n, and non-singular otherwise. As we
can see from the fact above, the rank of a square matrix A is equal to n if and only if the RREF
of A is the identity matrix In, which, as we know (see Proposition 17.3), is the same as detA 6= 0.
Therefore, in view of Corollary 17.4, we can summarize this as follows:
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Corollary 21.6. For A ∈ Matn the following are equivalent:

• rkA = n (i.e., A is non-singular);

• kerA = 0 (i.e. the homogeneous system Ax = 0 has a unique solution);

• detA 6= 0;

• RREF of A is the identity matrix In;

• A is invertible.

There is another way to find the rank of a matrix A ∈ Matm×n based on the following property.

Fact. The rank of a matrix is equal to the maximal size of a non-singular square submatrix.

Example 21.7. Let A =

(
0 1 1
1 0 1

)
. Since there are two rows only, we see that rkA ≤ 2. We

observe that det

(
0 1
1 0

)
= −1 6= 0, so there is a 2× 2 non-singular submatrix, which implies that

rkA ≥ 2. Therefore, rkA = 2.

Example 21.8. Let A =

0 1 −2
0 2 −4
0 −3 6

. Observe that detA = 0, so rkA < 3. Further, any

2 × 2 submatrix of A is singular, so rkA < 2. There are non-zero entries in A, which implies that
rkA ≥ 1. Thus, rkA = 1.
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Lecture 22

One more fact about the rank.

Definition 22.1. Let A ∈ Matm×n. The dimension of the kernel of A is called nullity of A, notation
nullA.

Nullity is closely related to rank:

Proposition 22.2. For A ∈ Matm×n, we have nullA = n− rkA.

The reason for this is the following: the kernel is the set of solutions of the homogeneous system
Ax = 0, so the dimension of the kernel is equal to the number of “free parameters” in the solution
of the system. The rank is equal to the number of non-zero rows in RREF, so it is equal to the
number of “non-free” variables. Therefore, these two numbers sum up to the number of variables,
i.e. to n.

Application to linear ODEs

Ordinary Differential Equations (ODEs) come up in the modelling of engineering and physical
problems. We can use matrices to help solve linear ODEs:

Example 22.3. Solve the ODE
y′′ − 5y′ + 4y = 0,

where y = y(t) is a function in t, with the initial conditions y(3) = 6, y′(3) = −1.
Solution: We can write higher order ODE as a system with a change of variables. Let

x1(t) = y(t)

x2(t) = y′(t).

Taking derivatives, we get

x′1 = y′ = x2

x′2 = y′′ = −4y + 5y′ = −4x1 + 5x2.

The initial conditions become
x1(3) = 6, x2(3) = −1.

Our ODE is thus rewritten as

x′ =

(
x′1
x′2

)
=

(
0 1
−4 5

)(
x1
x2

)
= Ax,

where A is the 2× 2 matrix.
Now if we had a one-variable ODE x′ = ax, for a ∈ R, then the solution would be x(t) = ceat,

for some constant c. For our equation x′ = Ax, let’s see when

x = bert
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is a solution, for some vector b and r ∈ R. Well, this will be a solution precisely when

x′ = brert = Abert.

Cancelling the ert (which are never zero!), we get

Ab = rb.

So, we need to find the vectors b satisfying this. Such vectors are called eigenvectors of A with
eigenvalue r.

To find these, we do the following:

• Compute the determinant of the matrix A− λI2:

det(A− λI2) =

∣∣∣∣( 0 1
−4 5

)
−
(
λ 0
0 λ

)∣∣∣∣ =

∣∣∣∣(−λ 1
−4 5− λ

)∣∣∣∣ = −λ(5− λ) + 4

= λ2 − 5λ+ 4.

Now find the roots of this polynomial:

λ1 = 1, λ2 = 4.

These are the eigenvalues of A.

• Next, solve the equation
Ab = rb

for each of the eigenvalues. For the first one:(
0 1
−4 5

)(
b1
b2

)
= 1 ·

(
b1
b2

)
⇐⇒

(
b2

−4b1 + 5b2

)
=

(
b1
b2

)
⇐⇒

{
b2 = b1

−4b1 + 5b2 = b2
⇐⇒ b2 = b1.

We only need one solution, for example

b =

(
b1
b2

)
=

(
1
1

)
.

For the second eigenvalue, we similarly get a solution

b =

(
b1
b2

)
=

(
1
4

)
.

We now return to our system of ODEs: x′ = Ax, and see that we have found two solutions to it:

v1 =

(
1
1

)
et, v2 =

(
1
4

)
e4t.

We now finish by using the following fact:
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Fact. The set of solutions x (which are functions in t) of the system x′ = Ax form a vector space.
In fact, this space equals

span {v1, v2} .

Thus, any solution of x′ = Ax is a linear combination of v1 and v2, that is, the general solution is

x =

(
x1
x2

)
= c1v1 + c2v2,

for some c1, c2 ∈ R.

Plugging in our initial values

x1(3) = 6, x2(3) = −1,

we can find the constants:(
x1(3)
x2(3)

)
=

(
6
−1

)
= c1

(
1
1

)
e3 + c2

(
1
4

)
e4·3,

⇐⇒

{
c1e

3 + c2e
12 = 6

c1e
3 + 4c2e

12 = −1
.

Solving this, we get

c1 =
25

3e3
, c2 =

−7

3e12
.

So, the solution to our original equation is

y(t) = x1(t) = c1e
t + c2e

4t =
25

3e3
et +

−7

3e12
e4t.

The above example shows that it is of interest of find eigenvalues and eigenvectors of matrices.

Example 22.4. Let

A =

(
3 1
−2 0

)
.

Find the eigenvalues: det(A− λI) = det

(
3− λ 1
−2 −λ

)
= (3− λ)(−λ) + 2 = λ2 − 3λ+ 2. Find the

roots:
λ = 1, λ = 2.

Now find eigenvectors for each eigenvalue:(
3 1
−2 0

)(
x
y

)
= 1 ·

(
x
y

)
⇐⇒

(
2 1
−2 −1

)
= 0⇐⇒

(
2 1
0 0

)
= 0

⇐⇒ 2x+ y = 0,

so one eigenvector is, for example, (
x
y

)
=

(
1
−2

)
.
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Note that eigenvectors are always defined up to scaling.
For the eigenvalue λ = 2 we similarly get an eigenvector(

x
y

)
=

(
1
−1

)
.

Thus we have

A

(
1
−2

)
=

(
1
−2

)
A

(
1
−1

)
= 2

(
1
−1

)
=

(
2
−2

)
.

That is, the linear map LA fixes one eigenvector, and doubles the other.
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Lecture 23

Eigenvalues and eigenvectors

Definition 23.1. Let A ∈ Matn(C). Recall that if

Ax = λx,

for some non-zero vector x ∈ Cn and λ ∈ C, then λ is called an eigenvalue of A and x is called an
eigenvector of A (for the eigenvalue λ).

To find eigenvalues and eigenvectors, we proceed as follows:
Rewrite the equation Ax = λx as

Ax− λx = (A− λI)x = 0.

We thus have a homogeneous system of linear equations, with coefficient matrix A − λI. A linear
system has either zero solutions, one solution or infinitely many solutions. A homogeneous system
always has at least one solution: x = 0, so the first possibility is excluded.

Now, if the determinant det(A − λI) is not zero, then we know that A − λI has an inverse, so
we would get exactly one solution

(A− λI)−1(A− λI)x = 0 =⇒ x = 0.

But an eigenvector is not allowed to be 0, so we will ignore this case. Thus, the only possibility is
that

det(A− λI) = 0,

and for any λ satisfying this, we will have infinitely many solutions x.
The LHS here will be a polynomial in λ of degree n; compare how in (22.3) we got

det(A− λI2) = λ2 − 5λ+ 4.

The polynomial det(A− λI) is called the characteristic polynomial of A. Its roots are those values
of λ for which the equation Ax = λx has a non-zero solution, so these roots are the eigenvalues of
A.

Suppose now that a is an eigenvalue of A. To find the corresponding eigenvector(s), we solve
the linear system

Ax = ax,

just like we did in (22.3). Note: We will have infinitely many eigenvectors.
We have seen examples at the last lecture, here are some other examples:

Example 23.2. Let A =

(
0 1
−1 0

)
. The characteristic polynomial is det(A− λI) = 1 + λ2, so the

eigenvalues are ±i. The eigenvectors v1 and v2 can be found by solving the equations (A−iI)v1 = 0

and (A− iI)v2 = 0, so we can choose eigenvectors v1 =

(
1
i

)
and v2 =

(
1
−i

)
.
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Example 23.3. Let A =

(
0 1
0 0

)
. The characteristic polynomial is det(A− λI) = (−λ)2 = λ2, so

there is only one eigenvalue λ = 0. The space of eigenvectors E0 is given by

E0 = {x ∈ C2 | Ax = 0},

that is,

E0 = {
(
x
0

)
| x ∈ C}.

Since E0 is spanned by one vector, for example
(

1
0

)
, it means that E0 is a one-dimensional vector

space. This means that any two vectors is E0 are linearly dependent. Thus, there are no two vectors
in E0 which form a basis for C2.

Definition 23.4. The set of eigenvectors for an eigenvalue λ is called an eigenspace, denoted Eλ.
Thus,

Eλ = {v | (A− λI)v = 0} .

Example 23.5. Let A =

1 0 6
3 2 1
2 0 2

. Determine the eigenvalues and eigenspaces of A.

Solution: For the eigenvalues:

det(A− λI) =

∣∣∣∣∣∣
1− λ 0 6

3 2− λ 1
2 0 2− λ

∣∣∣∣∣∣ = (expand along the middle column)

= (2− λ)

∣∣∣∣1− λ 6
2 2− λ

∣∣∣∣ = (2− λ)((1− λ)(2− λ)− 12)

= (2− λ)(λ2 − 3λ− 10) = (2− λ)(λ− 5)(λ+ 2).

The last step is given by finding the roots of the quadratic polynomial. Thus the eigenvalues are

2, 5, −2.

The eigenvectors in the eigenspace E2 are given by

Ax = 2x⇐⇒ (A− 2I)x = 0⇐⇒

−1 0 6
3 0 1
2 0 0

x = 0.

Gauss elimination gives the equivalent system1 0 0
0 0 1
0 0 0

x = 0⇐⇒ x =

0
y
0

 , for any y ∈ C.

Thus

E2 =


0
y
0

 | y ∈ C

 .
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Similarly, for the eigenvalue 5, we get−4 0 6
3 −3 1
2 0 −3

x = 0⇐⇒

1 0 −3/2
0 1 −11/6
0 0 0

x = 0

⇐⇒ x =

 3z/2
11z/6
z

 , z ∈ C.

⇐⇒ E5 =


 3z/2

11z/6
z

 | z ∈ C

 .

Finally, for −2, we get 3 0 6
3 4 1
2 0 4

x = 0⇐⇒

1 0 2
0 1 −5/4
0 0 0

x = 0

⇐⇒ x =

−2z
5z/4
z

 , z ∈ C.

⇐⇒ E−2 =


−2z

5z/4
z

 | z ∈ C

 .

We see that each of the eigenspaces are one-dimensional. Indeed, we can choose a one-element basis
in each:

E2 = span


0

1
0

 , E5 = span


 9

11
6

 , E−2 = span


 8
−5
−4

 .

Example 23.6. Let A =


1 0 0 0
0 1 0 0
0 0 0 2
0 0 −2 0

. Determine the eigenvalues and eigenspaces of A.

Solution: For the eigenvalues:

det(A− λI) =

∣∣∣∣∣∣∣∣
1− λ 0 0 0

0 1− λ 0 0
0 0 −λ 2
0 0 −2 −λ

∣∣∣∣∣∣∣∣ = (1− λ)2(4 + λ2) = (1− λ)2(2i+ λ)(2i− λ).

Thus the eigenvalues are
λ1 = 2i, λ2 = −2i, λ3 = 1.

The eigenvectors in the eigenspace E2i are given by

0 = (A− 2iI)x =


1− 2i 0 0 0

0 1− 2i 0 0
0 0 −2i 2
0 0 −2 −2i

 v1,
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which is equivalent to

v1 = c1


0
0
1
i

 , c1 ∈ C.

Thus

E2i =




0
0
c1
ic1

 | c1 ∈ C

 .

Similarly, for the eigenvalue λ2 = −2i, we get

0 = (A− 2iI)x =


1 + 2i 0 0 0

0 1 + 2i 0 0
0 0 2i 2
0 0 −2 2i

 v2,

which is equivalent to

v2 = c2


0
0
1
−i

 , c2 ∈ C.

Thus

E−2i =




0
0
c2
−ic2

 | c2 ∈ C

 .

Finally, for λ3 = 1, we get

0 = (A− I)x =


0 0 0 0
0 0 0 0
0 0 −1 2
0 0 −2 −1

 v,

which is equivalent to

v ∈ E1 =



c3
c4
0
0

 | c3, c4 ∈ C

 .

We see that E1 can be written as a span of the two linearly independent vectors


1
0
0
0

 and


0
1
0
0

,

so it is two-dimensional. Note also that we could choose a different basis in E1, and thus obtain
a different basis of C4 consisting of eigenvectors of A. We will come back to this in the process of
diagonalization of matrices.
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Lecture 24

Eigenvalues of special matrices

We now look at eigenvalues of matrices of special types.

Hermitian matrices. Let A ∈ Matn be Hermitian, so that A† = A. Let v be an eigenvector of
A, Av = λv. Let us compute v†Av in two ways. First,

v†Av = (v†A)v = (v†A†)v = (Av)†v = (λv)†v = v†λ∗v = λ∗(v†v).

On the other hand,
v†Av = v†(Av) = v†λv = λ(v†v).

Comparing the two expressions and using the fact v†v 6= 0, we see that λ∗ = λ. Therefore,
eigenvalues of Hermitian matrices are always real.

Example 24.1. Let A =

(
1 i
−i 2

)
. Then the characteristic polynomial is det(A − λI) = (1 −

λ)(2− λ)− 1 = λ2 − 3λ+ 1 which has two real roots λ = 3±
√
5

2 .

As real symmetric matrices are Hermitian, we see that they also have real eigenvalues. Further,
the computation above applied to an anti-Hermitian matrix would give λ∗ = −λ, which implies
that the eigenvalues are purely imaginary (i.e., their real part is zero). Summarizing, we have

Corollary 24.2. • Eigenvalues of Hermitian matrices are real.

• Eigenvalues of real symmetric matrices are real.

• Eigenvalues of anti-Hermitian matrices are purely imaginary. In particular, eigenvalues of
real anti-symmetric matrices are purely imaginary.

Unitary matrices. Now let A ∈ Matn be unitary, so that A†A = I. Let v be an eigenvector of
A, Av = λv. Let us compute v†v. We have

v†v = v†Iv = v†A†Av = (Av)†(Av) = (λv)†(λv) = v†λ∗λv = (λλ∗)(v†v) = |λ|2(v†v).

Therefore, |λ|2 = 1, so |λ| = 1.

Corollary 24.3. Eigenvalues of unitary and real orthogonal matrices have modulus 1.

Example 24.4. Let A =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. Then λ = ±eiϕ, so |λ| = 1.
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Diagonalization

A matrix A ∈ Matn(C) is said to be diagonalizable if we can choose a basis for Cn consisting of
eigenvectors of LA.

The term diagonalization means the following. Given a basis {v1, . . . , vn} for Cn, we can create
a matrix B = (bij) of LA with respect to this basis: we can write for every j = 1, . . . , n

LA(vj) = b1jv1 + b2jv2 + · · ·+ bnjvn =

n∑
i=1

bijvi.

If the basis consists of eigenvectors of LA, then LAvj = λjvj , so the matrix B is diagonal.

Example 24.5. We have already seen in (22.4) that A =

(
3 1
−2 0

)
has eigenvectors

v1 =

(
1
−2

)
, v2 =

(
1
−1

)
with eigenvalues λ1 = 1 and λ2 = 2 respectively. Therefore,

LAv1 = 1 · v1 + 0 · v2, LAv2 = 0 · v1 + 2 · v2,

and thus LA is given by the diagonal matrix
(

1 0
0 2

)
is the basis {v1, v2}.
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Lecture 25

Example 25.1 (Diagonalization of 2× 2 matrices). If we have a 2× 2 matrix

A =

(
a b
c d

)
and choose a basis v1, v2 for C2, then the matrix for LA w.r.t. this basis is given as follows. We can
write

LA(v1) = Av1 = α1 · v1 + α2 · v2,
LA(v2) = Av2 = α3 · v1 + α4 · v2 (*)

for some uniquely determined αi ∈ C (because v1, v2 is a basis, so any vector is a unique linear
combination of v1, v2). Now, the matrix for LA w.r.t. this basis is(

α1 α3

α2 α4

)
.

So, if A is diagonalizable, it means that we can choose v1, v2 such that α2 = α3 = 0 (which means
exactly that v1 (v2, resp.) is an eigenvector for A with eigenvalue α1 (α4, resp.).

Now, if A is diagonalizable, we can form a matrix P whose columns are the basis vectors v1, v2
(who are the eigenvectors of A according to our choice). That is, if we write

v1 =

(
x
y

)
, v2 =

(
z
w

)
,

for some coordinates x, y, z, w, then

P =

(
x z
y w

)
and equations (∗) become

A

(
x
y

)
= α1

(
x
y

)
⇐⇒

(
ax+ by
cx+ dy

)
= α1

(
x
y

)
A

(
z
w

)
= α4

(
z
w

)
⇐⇒

(
az + bw
cz + dw

)
= α4

(
z
w

)
,

so

AP =

(
a b
c d

)(
x z
y w

)
=

(
ax+ by az + bw
cx+ dy cz + dw

)
=

(
α1x α4z
α1y α4w

)
=

(
x z
y w

)(
α1 0
0 α4

)
= P

(
α1 0
0 α4

)
.

In fact, one can show that P has an inverse: indeed, the columns of P are linearly independent
(since v1, v2 form a basis of C2), and thus the rank of P is equal to 2, which implies that detP 6= 0
and thus P is invertible (see Corollary 21.6). Therefore, we can multiply by P−1 on both sides to
obtain

P−1AP =

(
α1 0
0 α4

)
.
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Thus, we come to the following algorithm of diagonalization of 2× 2 matrices.

Step 1: Compute charasteritic polynnomial of A and eigenvalues λ1 and λ2.

Step 2: Find two linearly independent eigenvectors v1 and v2 of A.

Step 3: Compose a matrix P (which is called a transformation matrix) whose columns are v1 and v2.
Then P−1AP is diagonal with diagonal entries λ1 and λ2.

Remark. • In Step 1, the eigenvalues λ1 and λ2 may coincide.

• In Step 2, we may not be able to find two linearly independent eigenvectors v1 and v2 of A.
Then the whole procedure fails, which means that the matrix is not diagonalizable.

• If λ1 6= λ2 then eigenvectors v1 and v2 are linearly independent, so the matrix is diagonalizable.
Indeed, assuming that v1 and v2 are linearly dependent we conclude that they belong to the
same eigenspace, and thus have the same eigenvalue, which leads to a contradiction.

Example 25.2. A =

(
1 i
−i 1

)
. Then the characteristic polynomial is det(A−λI) = (1−λ)2−1 =

λ2 − 2λ = (λ − 2)λ, so the eigenvalues are λ1 = 0 and λ2 = 2. Solving the homogenuous systems
(A − λiI)vi = 0, we find the corresponding eigenspaces, and then we choose one eigenvector from

each: we can take, for example, v1 =

(
1
i

)
, v2 =

(
1
−i

)
. Then we get a matrix P =

(
1 1
i −i

)
whose

columns are v1 and v2, and one can check that

P−1AP =

(
1

−2i

(
−i −1
−i 1

))(
1 i
−i 1

)(
1 1
i −i

)
=

(
0 0
0 2

)
=

(
λ1 0
0 λ2

)
.

All of this works similarly for any n× n matrix for n ≥ 3.
We summarize the argument from Example 25.1:

Proposition 25.3. Let A ∈ Matn(C) be diagonalizable, i.e. there is a basis v1, . . . , vn for Cn such
that each vi is an eigenvector for A. If P is the matrix whose columns are the vectors v1, . . . , vn,
then

P−1AP =

λ1 . . .
λn

 ,

where λi is the eigenvalue for the eigenvector vi.

The essential requirement in the above proposition is that the vectors v1, . . . , vn are linearly
independent (they will then be a basis). If A has n distinct eigenvalues (as we had in (22.4) and
(23.5)), then it will have n linearly independent eigenvectors, and hence be diagonalizable. This is
because of the following fact:

Fact. Eigenvectors with distinct eigenvalues are linearly independent.

Corollary 25.4. If A ∈ Matn(C) has n distinct eigenvalues, then A is diagonalizable.
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Indeed, by the definition of an eigenvalue, for every eigenvalue λi we can find a non-zero eigen-
vector vi. Due to the fact above, they all are linearly independent, and since there are n of them
they compose a basis of Cn.
Remark. According to the Fundamental Theorem of Algebra, any complex polynomial in one vari-
able of degree n always has n roots (some of which may coincide). In particular, this can be applied
to the characteristic polynomial of A ∈ Matn(C). In other words, if det(A − λI) has k distinct
roots, we can write

det(A− λI) = (λ1 − λ)l1(λ2 − λ)l2 . . . (λk − λ)lk = Πk
i=1(λi − λ)li ,

where the sum of all li is equal to n (numbers li are called multiplicities of roots λi).
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Lecture 26

We have seen that we can easily diagonalize a matrix having n distinct eigenvalues. Even if the
eigenvalues are not distinct, a matrix may still be diagonalizable:

Example 26.1. Let A =

1 0 0
1 −1 −1
1 −2 0

. Its eigenvalues are given by the roots of the polynomial

(1− λ)((−1− λ)(−λ)− 2) = (1− λ)(λ2 + λ− 2) = (1− λ)2(λ+ 2),

that is, eigenvalues: 1,−2.
We now find the eigenspaces. For λ = 1:0 0 0

1 −2 −1
1 −2 −1

x = 0⇐⇒ x− 2y − z = 0.

Thus, the eigenspace has two free parameters:

E1 =


2y + z

y
z

 | y, z ∈ C

 .

Thus E1 is a two-dimensional space, so we can find two linearly independent vectors in it, for
example 2

1
0

 and

1
0
1

 .

Then

E1 =

y
2

1
0

+ z

1
0
1

 | y, z ∈ C

 = span


2

1
0

 ,

1
0
1

 .

Moreover, for λ = −2, we get3 0 0
1 1 −1
1 −2 2

x = 0⇐⇒

0 6 −6
0 3 −3
1 −2 2

x = 0

⇐⇒

1 0 0
0 1 −1
0 0 0

x = 0⇐⇒

{
x = 0

y − z = 0.
⇐⇒ x =

0
y
y

 , y ∈ C.

Thus E−2 =


0
y
y

 | y ∈ C

 = span


0

1
1

.

Since

0
1
1

 is an eigenvector for an eigenvalue which is distinct from that for the eigenvectors

2
1
0


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and

1
0
1

, we see that 2
1
0

 ,

1
0
1

 ,

0
1
1


are linearly independent. Thus, they form a basis for C3 and hence A is diagonalizable.

In fact, if we form the matrix

P =

2 1 0
1 0 1
0 1 1

 ,

then Proposition 25.3 tells us that

P−1AP =

1 0 0
0 1 0
0 0 −2

 .

Summarizing, we just need to choose a basis in each eigenspace, and then collect all of these
together to compose a basis of the whole space Cn. This can be done in the only case when we
have “enough” linearly independent eigenvectors in every eigenspace, i.e. if the sum of all of the
dimensions dimEλi is equal to n. In fact, the following (non-trivial) statement always holds.

Fact. Let det(A− λI) = Πk
i=1(λi − λ)li , where the sum of all li is equal to n (recall that numbers

li are called multiplicities of roots λi). Then for every i = 1, . . . , k one has dimEλi ≤ li.
Therefore, the example above can be generalized in the following way:

Theorem 26.2. Let A ∈ Matn(C), let λ1, . . . , λk be the eigenvalues of A, and let the characteristic
polynomial of A be det(A − λI) = Πk

i=1(λi − λ)li, where the sum of all li is equal to n. Then A is
diagonalizable if and only if for every i = 1, . . . , k the dimension of the eigenspace Eλi is equal to li.

Note that, by definition, Eλi = ker(A − λiI), and thus dimEλi = n − rk(A − λiI). Thus,
Theorem 26.2 can be reformulated in the following easy-to-use way:

Corollary 26.3. A matrix A ∈ Matn(C) with eigenvalues λ1, . . . , λk and characteristic polynomial
det(A − λI) = Πk

i=1(λi − λ)li is diagonalizable if and only if for every i = 1, . . . , k we have n −
rk(A− λiI) = li.

Corollary 26.3 leads to the following algorithm.

Criterion of diagonalizability of a matrix. Let A ∈ Matn(C). To decide whether A is diago-
nalizable, we need to do the following.

Step 1. Compute the characteristic polynomial det(A− λI) = (λ1 − λ)l1(λ2 − λ)l2 . . . (λk − λ)lk .

Step 2. For every i = 1, . . . , k compute the number n− rk(A− λiI).

Step 3. If for every i = 1, . . . , k we have n− rk(A− λiI) = li, then A is diagonalizable. Otherwise, it
is not.

Remark. In Steps 2 and 3, we need to consider only eigenvalues λi with li > 1. Indeed, since we
know that 1 ≤ n − rk(A − λiI) ≤ li, the equality li = 1 guarantees that n − rk(A − λiI) = 1 = li
(in particular, we immediately get Corollary 25.4).
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Lecture 27

Computing high powers of a diagonalizable matrix

A typical problem about matrices is: Given a matrix, for example, A =

(
3 1
−2 0

)
, compute

A1000 = A ·A · · ·A︸ ︷︷ ︸
1000 times

.

If we start by simply trying to multiply A with itself:

A2 =

(
3 1
−2 0

)(
3 1
−2 0

)
=

(
7 3
−6 −2

)
A3 = · · ·

we quickly realize that this is going to be a lot of work, even for a computer. However, if A is
diagonalizable, which we know that this A is (by (22.4)), it means that there is a matrix P such
that

P−1AP =

λ1 0 0

0
. . . 0

0 0 λn

 ,

and it is easy to take a large power of a diagonal matrix:

(P−1AP )1000 =

λ1 0 0

0
. . . 0

0 0 λn


1000

=

λ
1000
1 0 0

0
. . . 0

0 0 λ1000n

 .

Now, the left hand side is

(P−1AP )1000 = (P−1AP )(P−1AP ) · · · (P−1AP ) = P−1A1000P

(note that all the “inner” PP−1 cancel, because PP−1 = I). So

P−1A1000P =

λ
1000
1 0 0

0
. . . 0

0 0 λ1000n

 ,

and thus

A1000 = P

λ
1000
1 0 0

0
. . . 0

0 0 λ1000n

P−1,

which we can compute, if we know P .
Similarly, we can compute a power series of a diagonalizable matrix A, e.g. exponent: if we

denote the diagonal matrix

λ1 0 0

0
. . . 0

0 0 λn

 as Λ, we have

exp(A) =

∞∑
k=0

Ak

k!
=

∞∑
k=0

(PΛP−1)k

k!
=

∞∑
k=0

PΛkP−1

k!
= P (

∞∑
k=0

Λk

k!
)P−1 = P exp(Λ)P−1,
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where

exp(Λ) =

∞∑
k=0

Λk

k!
=

∞∑
k=0

1

k!

λ
k
1 0 0

0
. . . 0

0 0 λkn

 =

e
λ
1 0 0

0
. . . 0

0 0 eλn

 .

Example 27.1. Let’s take A =

(
3 1
−2 0

)
, as above. By (22.4) we know that

P−1AP =

(
1 0
0 2

)
,

with P =

(
1 1
−2 −1

)
. Thus, by the above discussion,

A1000 = P

(
1 0
0 21000

)
P−1.

So to compute this, we need P−1:(
1 1 1 0
−2 −1 0 1

)
R2+2R1−−−−−→

(
1 1 1 0
0 1 2 1

)
R1−R2−−−−→

(
1 0 −1 −1
0 1 2 1

)
,

so

P−1 =

(
−1 −1
2 1

)
.

Thus

A1000 =

(
1 1
−2 −1

)(
1 0
0 21000

)(
−1 −1
2 1

)
=

(
1 21000

−2 −21000

)(
−1 −1
2 1

)
=

(
21001 − 1 21000 − 1
2− 21001 2− 21000

)
.

The entries here are quite large numbers, whose decimal expansions could be calculated, but are
best just left as they are.

Now,

exp(A) = P exp

(
1 0
0 2

)
P−1 =

(
1 1
−2 −1

)(
e1 0
0 e2

)(
−1 −1
2 1

)
=

(
2e2 − e e2 − e
2e− e2 2e+ e2

)
.

Let’s take a 3× 3 as well:

Example 27.2. Let A =

1 0 0
1 −1 −1
1 −2 0

. We will compute the nth power of A, for an arbitrary

integer n ≥ 1. By (26.1), we know that

P−1AP =

1 0 0
0 1 0
0 0 −2

 ,
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where

P =

2 1 0
1 0 1
0 1 1

 .

We need P−1. Calculating it via Gauss elimination as before, gives

P−1 =
1

3

 1 1 −1
1 −2 2
−1 2 1

 .

Thus, for each n,

An =

2 1 0
1 0 1
0 1 1

1 0 0
0 1 0
0 0 (−2)n

 1

3

 1 1 −1
1 −2 2
−1 2 1


=

1

3

2 1 0
1 0 (−2)n

0 1 (−2)n

 1 1 −1
1 −2 2
−1 2 1


=

1

3

 3 0 0
1− (−2)n 1 + 2(−2)n −1 + 2(−2)n

1− (−2)n −2 + 2(−2)n 2 + (−2)n

 .

Note that (−2)n = (−1)n2n =

{
2n if n is even
−2n if n is odd

.

Remark: It is only for diagonalizable matrices we can do this. For non-diagonalizable matrices
the powers can also be calculated by using Jordan normal form.
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