Geometry III/IV, Problems Class 1

Wednesday, January 30

Möbius transformations, inversion

P1.1. Find the type of the Möbius transformation $f(z)=\frac{1}{z}$.
P1.2. Let f, g be reflections or inversions. Show that $g \circ f=f \circ g$ if and only if $F i x_{f}$ is orthogonal to Fix ${ }_{g}$.

P1.3. Let $\gamma_{1}, \ldots, \gamma_{5}$ be circle all passing through the same points $A, B \in \mathbb{R}^{2}$. Show that there exists a circle \mathcal{C} orthogonal to all circles γ_{i}.

P1.4. Prove Ptolemy's Theorem: for a cyclic quadrilateral $A B C D$ holds $|A B| \cdot|C D|+|B C| \cdot|D A|=|A C| \cdot|B D|$.
(three proofs: (a) by using cross-ratios, as in HW; (b) by using inversion; (c) "proof without words").

