Geometry III/IV, Problems Class 2

Wednesday, February 14

Poincaré disc model of hyperbolic geometry

P2.1. Show that any two divergent lines have a unique common perpendicular (i.e. if $l_{1}, l_{2} \subset \mathbb{H}^{2}$ are divergent then there exists a unique line l^{\prime} such that $l^{\prime} \perp l_{1}$ and $l^{\prime} \perp l_{2}$).

Definition. A hyperbolic polygon with all vertices on the absolute is called an ideal polygon. Remark: Ideal polygons have zero angles.

P2.2. (a) Show that up to applying an isometry, there exists a unique hyperbolic ideal triangle.
(b) Show that hyperbolic ideal quadrilaterals modulo isometries form a 1-parameter family.
(c) How many hyperbolic ideal n-gons are there?
$\mathbf{P 2 . 3}$. Let $\gamma_{0}, \ldots \gamma_{3}$ be circles in \mathbb{E}^{2} such that γ_{i} is tangent to γ_{i+1} for all i (where i is considered modulo 4). Show that all the common points $\gamma_{i} \cap \gamma_{i+1}$ of the circles lie on on one circle or line.

