Geometry III/IV, Problems Class 2

Wednesday, February 14

Poincaré disc model of hyperbolic geometry

P2.1. Show that any two divergent lines have a unique common perpendicular (i.e. if $l_1, l_2 \subset \mathbb{H}^2$ are divergent then there exists a unique line l' such that $l' \perp l_1$ and $l' \perp l_2$).

Definition. A hyperbolic polygon with all vertices on the absolute is called an *ideal* polygon. **Remark:** Ideal polygons have zero angles.

- **P2.2.** (a) Show that up to applying an isometry, there exists a unique hyperbolic ideal triangle.
 - (b) Show that hyperbolic ideal quadrilaterals modulo isometries form a 1-parameter family.
 - (c) How many hyperbolic ideal *n*-gons are there?
- **P2.3.** Let $\gamma_0, \ldots, \gamma_3$ be circles in \mathbb{E}^2 such that γ_i is tangent to γ_{i+1} for all *i* (where *i* is considered modulo 4). Show that all the common points $\gamma_i \cap \gamma_{i+1}$ of the circles lie on on one circle or line.