Elementary hyperbolic geometry

15.1. Compute in the upper half-plane (don't forget first to move the triangle to a convenient place).
15.2. - Use the notation as in the figure below.

- First, show that

$$
\sin ^{2} \alpha=\frac{(2 k \cos \varphi)^{2}}{\left(1-k^{2}\right)^{2}+4 k^{2} \cos ^{2} \varphi} .
$$

- Square the required expressions, express tanh ${ }^{2}$ and $\sinh ^{2}$ through $\cosh ^{2}$ and use the distance formula to get the latter.

Figure 1: Notation for Problem 15,2
15.3. Use the identities on sinh and cosh.
15.5. Take one point on a given distance from the line and apply isometries to get more points on the same distance.
16.2. Place your triangle in the Klein model in such a way that all altitudes will be represented by the altitudes of a Euclidean triangle.
16.3. To compute, place the objects so that the required distance will be a length of a segment lying in the plane $x_{2}=0$, then everything is reduced to a 2 -dimensional problem.
16.4. Use formulae listed in 16. 3,

