Geometry III/IV, Homework: weeks 15–16

Due date for starred problems: Friday, March 8.

Elementary hyperbolic geometry

15.1. (a) Let P and Q be the feet of the altitudes in an ideal hyperbolic triangle. Find PQ.

- (b) Find the radius of a circle inscribed into an ideal hyperbolic triangle.
- (c) Show that a radius of a circle inscribed into a hyperbolic triangle does not exceed $\operatorname{arccosh}(2/\sqrt{3})$.
- **15.2.** For a right hyperbolic triangle $(\gamma = \frac{\pi}{2})$ show:

(a) $\tanh b = \tanh c \cos \alpha$, (b) $\sinh a = \sinh c \sin \alpha$.

15.3. Show that in the upper half-plane model the following distance formula holds:

$$4\sinh^2\frac{d}{2} = \frac{|z-w|^2}{\operatorname{Im}(z)\operatorname{Im}(w)}.$$

15.4. Find an area of a right-angled hyperbolic pentagon.

15.5. (*) In the upper half-plane model, find the locus of points that lie on distance d from the line $\{\operatorname{Re} z = 0\}$.

Projective models

- 16.1. In the Klein disc model draw two parallel lines, two ultra-parallel lines, an ideal triangle, a triangle with angles $(0, \frac{\pi}{2}, \frac{\pi}{3})$.
- 16.2. (*) Show that three altitudes of a hyperbolic triangle either have a common point, or are all parallel to each other, or there exists a unique line orthogonal to all three altitudes.
- **16.3.** Let $\boldsymbol{u}, \boldsymbol{v}$ be two vectors in $\mathbb{R}^{2,1}$. Denote $Q = |\frac{(\boldsymbol{u}, \boldsymbol{v})^2}{(\boldsymbol{u}, \boldsymbol{u})(\boldsymbol{v}, \boldsymbol{v})}|$, where $(x, y) = x_1y_1 + x_2y_2 x_3y_3$. Show the following distance formulae:
 - (a) if $(\boldsymbol{u}, \boldsymbol{u}) < 0$, $(\boldsymbol{v}, \boldsymbol{v}) < 0$, then \boldsymbol{u} and \boldsymbol{v} define two points in \mathbb{H}^2 , and $Q = \cosh^2 d(\boldsymbol{u}, \boldsymbol{v})$.
 - (b) if $(\boldsymbol{u}, \boldsymbol{u}) < 0$, $(\boldsymbol{v}, \boldsymbol{v}) > 0$, then \boldsymbol{u} defines a point and \boldsymbol{v} defines a line $l_{\boldsymbol{v}}$ in \mathbb{H}^2 , and $Q = \sinh^2 d(\boldsymbol{u}, l_{\boldsymbol{v}})$.
 - (c) if (u, u) > 0, (v, v) > 0 then u and v define two lines l_u and l_v in \mathbb{H}^2 and
 - if Q < 1, then l_u intersects l_v forming angle φ satisfying $Q = \cos^2 \varphi$;
 - if Q = 1, then l_u is parallel to l_v ;
 - if Q > 1, then l_u and l_v are ultra-parallel lines satisfying $Q = \cosh^2 d(l_u, l_v)$.

- **16.4.** (*) Consider the two-sheet hyperboloid model $\{u = (u_1, u_2, u_3) \in \mathbb{R}^{2,1} \mid (u, u) = -1, u_3 > 0\}$, where $(u, u) = u_1^2 + u_2^2 u_3^2$.
 - (a) For the vectors

$$m{v}_1 = (2, 1, 2)$$
 $m{v}_2 = (0, 1, 2)$ $m{v}_3 = (3, 4, 5)$
 $m{v}_4 = (1, 0, 0)$ $m{v}_5 = (0, 1, 0)$ $m{v}_6 = (1, 1, 2)$

decide whether v_i defines a point in \mathbb{H}^2 , a point on the absolute, or a line in \mathbb{H}^2 .

- (b) Find the distance between the two points of \mathbb{H}^2 described in (a).
- (c) Which pairs of lines in (a) are intersecting? Which lines are parallel? Which lines are ultraparallel? Justify your answer.
- (d) Find the distances between all pairs of ultra-parallel lines in (a).
- (e) Does any of the points in (a) lie on any of the lines above?
- (f) Find the angles between the pairs of intersecting lines.

References:

Lectures (Elementary hyperbolic geometry, area, Klein model and hyperboloid model) are based on Lectures VII, VIII, VI and XIII of Prasolov's book.