Geometry III/IV, Homework: weeks 15-16

Due date for starred problems: Friday, March 8.

Elementary hyperbolic geometry

15.1. (a) Let P and Q be the feet of the altitudes in an ideal hyperbolic triangle. Find $P Q$.
(b) Find the radius of a circle inscribed into an ideal hyperbolic triangle.
(c) Show that a radius of a circle inscribed into a hyperbolic triangle does not exceed $\operatorname{arccosh}(2 / \sqrt{3})$.
15.2. For a right hyperbolic triangle $\left(\gamma=\frac{\pi}{2}\right)$ show:
(a) $\tanh b=\tanh c \cos \alpha$,
(b) $\sinh a=\sinh c \sin \alpha$.
15.3. Show that in the upper half-plane model the following distance formula holds:

$$
4 \sinh ^{2} \frac{d}{2}=\frac{|z-w|^{2}}{\operatorname{Im}(z) \operatorname{Im}(w)}
$$

15.4. Find an area of a right-angled hyperbolic pentagon.
15.5. (\star) In the upper half-plane model, find the locus of points that lie on distance d from the line $\{\operatorname{Re} z=0\}$.

Projective models

16.1. In the Klein disc model draw two parallel lines, two ultra-parallel lines, an ideal triangle, a triangle with angles $\left(0, \frac{\pi}{2}, \frac{\pi}{3}\right)$.
16.2. (\star) Show that three altitudes of a hyperbolic triangle either have a common point, or are all parallel to each other, or there exists a unique line orthogonal to all three altitudes.
16.3. Let $\boldsymbol{u}, \boldsymbol{v}$ be two vectors in $\mathbb{R}^{2,1}$. Denote $Q=\left|\frac{(\boldsymbol{u}, \boldsymbol{v})^{2}}{(\boldsymbol{u}, \boldsymbol{u})(\boldsymbol{v}, \boldsymbol{v})}\right|$, where $(x, y)=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}$. Show the following distance formulae:
(a) if $(\boldsymbol{u}, \boldsymbol{u})<0,(\boldsymbol{v}, \boldsymbol{v})<0$, then \boldsymbol{u} and \boldsymbol{v} define two points in \mathbb{H}^{2}, and $Q=\cosh ^{2} d(\boldsymbol{u}, \boldsymbol{v})$.
(b) if $(\boldsymbol{u}, \boldsymbol{u})<0,(\boldsymbol{v}, \boldsymbol{v})>0$, then \boldsymbol{u} defines a point and \boldsymbol{v} defines a line $l_{\boldsymbol{v}}$ in \mathbb{H}^{2}, and $Q=$ $\sinh ^{2} d\left(\boldsymbol{u}, l_{\boldsymbol{v}}\right)$.
(c) if $(\boldsymbol{u}, \boldsymbol{u})>0,(\boldsymbol{v}, \boldsymbol{v})>0$ then \boldsymbol{u} and \boldsymbol{v} define two lines $l_{\boldsymbol{u}}$ and $l_{\boldsymbol{v}}$ in \mathbb{H}^{2} and

- if $Q<1$, then $l_{\boldsymbol{u}}$ intersects $l_{\boldsymbol{v}}$ forming angle φ satisfying $Q=\cos ^{2} \varphi$;
- if $Q=1$, then $l_{\boldsymbol{u}}$ is parallel to $l_{\boldsymbol{v}}$;
- if $Q>1$, then $l_{\boldsymbol{u}}$ and $l_{\boldsymbol{v}}$ are ultra-parallel lines satisfying $Q=\cosh ^{2} d\left(l_{\boldsymbol{u}}, l_{\boldsymbol{v}}\right)$.
16.4. (\star) Consider the two-sheet hyperboloid model $\left\{\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{2,1} \mid(\boldsymbol{u}, \boldsymbol{u})=-1, u_{3}>0\right\}$, where $(\boldsymbol{u}, \boldsymbol{u})=u_{1}^{2}+u_{2}^{2}-u_{3}^{2}$.
(a) For the vectors

$$
\begin{array}{lll}
\boldsymbol{v}_{1}=(2,1,2) & \boldsymbol{v}_{2}=(0,1,2) & \boldsymbol{v}_{3}=(3,4,5) \\
\boldsymbol{v}_{4}=(1,0,0) & \boldsymbol{v}_{5}=(0,1,0) & \boldsymbol{v}_{6}=(1,1,2)
\end{array}
$$

decide whether \boldsymbol{v}_{i} defines a point in \mathbb{H}^{2}, a point on the absolute, or a line in \mathbb{H}^{2}.
(b) Find the distance between the two points of \mathbb{H}^{2} described in (a).
(c) Which pairs of lines in (a) are intersecting? Which lines are parallel? Which lines are ultraparallel? Justify your answer.
(d) Find the distances between all pairs of ultra-parallel lines in (a).
(e) Does any of the points in (a) lie on any of the lines above?
(f) Find the angles between the pairs of intersecting lines.

References:

Lectures (Elementary hyperbolic geometry, area, Klein model and hyperboloid model) are based on Lectures VII, VIII, VI and XIII of Prasolov's book.

