Geometry III/IV, Homework: weeks 17-18

Due date for starred problems: Tuesday, March 19.

Isometries of the hyperbolic plane

17.1. Show that any pair of parallel lines can be transformed to any other pair of parallel lines by an isometry.
17.2. Let $A, B \in \gamma$ be two points on a horocycle γ. Show that the perpendicular bisector to the segment $A B$ (of a hyperbolic line!) is orthogonal to γ.
17.3. Let f be a composition of three reflections. Show that f is a glide reflection, i.e. a hyperbolic translation along some line composed with a reflection with respect to the same line.
17.4. (\star) Let f be an isometry of the hyperbolic plane such that the distance from A to $f(A)$ is the same for all points $A \in \mathbb{H}^{2}$. Show that f is an identity map.
17.5. (\star) Let \boldsymbol{a} and \boldsymbol{b} be two vectors in the hyperboloid model such that $(\boldsymbol{a}, \boldsymbol{a})>0$ and $(\boldsymbol{b}, \boldsymbol{b})>0$. Let $l_{\boldsymbol{a}}$ and $l_{\boldsymbol{b}}$ be the lines determined by equations $(\boldsymbol{x}, \boldsymbol{a})=0$ and $(\boldsymbol{x}, \boldsymbol{b})=0$ respectively, and let $r_{\boldsymbol{a}}$ and $r_{\boldsymbol{b}}$ be the reflections with respect to $l_{\boldsymbol{a}}$ and $l_{\boldsymbol{b}}$.
(a) For $\boldsymbol{a}=(0,1,0)$ and $\boldsymbol{b}=(1,0,0)$ write down $r_{\boldsymbol{a}}$ and $r_{\boldsymbol{b}}$. Find $r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}(\boldsymbol{v})$, where $\boldsymbol{v}=(0,1,2)$.
(b) What is the type of the isometry $\varphi=r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}$ for $\boldsymbol{a}=(1,1,1)$ and $\boldsymbol{b}=(1,1,-1)$? (Hint: you don't need to compute $r_{\boldsymbol{a}}$ and $r_{\boldsymbol{b}}$).
(c) Find an example of \boldsymbol{a} and \boldsymbol{b} such that $\varphi=r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}$ is a rotation by $\pi / 2$.

Equidistant curves

18.1. Let l be a hyperbolic line, and let E_{l} be an equidistant curve for l.
(a) Let C_{1} and C_{2} be two connected components of the same equidistant curve E_{l}. Show that that C_{1} is also equidistant from C_{2}, i.e. given a point $A \in C_{1}$ the distance $d\left(A, C_{2}\right)$ from A to C_{2} does not depend on the choice of A.
(b) Let $A \in E_{l}$ be a point on the equidistant curve, and let $A_{l} \in l$ be the point of l closest to A. Show that the line $A A_{l}$ is orthogonal to the equidistant curve E_{l}.
(c) Let $P, Q \in l$ be two points on l, and let $A \in E_{l}$. Continue the rays $A P$ and $A Q$ till the next intersection points with E_{l}, denote the resulting intersection points by B and C. Let T be a curvilinear triangle $A B C$ (with geodesic sides $A B$ and $A C$, but $B C$ being a segment of the equidistant curve). Assuming that all angles of $A B C$ are acute, show that the area of T does not depend on the choice of $A \in E_{l}$.
(d) In the assumptions of (c), show that the area of the geodesic triangle $A B C$ does not depend on the choice of A.
18.2. (\star)
(a) Let l and l^{\prime} be ultra-parallel lines. Let E_{l} be an equidistant curve for l intersecting l^{\prime} in two points A and B. Denote by h the common perpendicular to l and l^{\prime} and let $H=h \cap l^{\prime}$ be the intersection point. Show that $A H=H B$.
(b) Let l be a line and E_{l} be an equidistant curve for l. For two points A, B on E_{l}, show that the perpendicular bisector of $A B$ is also orthogonal to l.
(c) Let $A B C$ be a triangle in the Poincaré disc model. Let γ be a Euclidean circumscribed circle (i.e. a circumscribed circle for $A B C$ considered as a Euclidean triangle). Suppose that γ intersects the absolute at points X and Y. Show that the (hyperbolic) perpendicular bisector to $A B$ is orthogonal to the hyperbolic line $X Y$.
(d) Show that three perpendicular bisectors in a hyperbolic triangle are either concurrent, or parallel, of have a common perpendicular.

References:

1. Lectures on types of isometries, horocycles and equidistant curves are based on Lecture IX of Prasolov's book.
2. Lectures on Poincaré theorem and modular group are based on

- parts of "Hyperbolic geometry" Caroline Series, especially some parts of Chapter 6, as well as (small pieces of) Chapters 4 and 5;
- and on Lectures X and XI of Prasolov's book.

